\(f\left(x\right)=\sin2x\)

Tính \(f'\left(\dfrac{\pi}{4}...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2017

a) Ta có f'(x) = 6(x + 10)'.(x + 10)5
\(=6.\left(x+10\right)^5\)

f"(x) = 6.5(x + 10)'.(x + 10)4 = 30.(x + 10)4.

=> f''(2) = 30.(2 + 10)4 = 622 080.

b) Ta có f'(x) = (3x)'.cos3x = 3cos3x,

f"(x) = 3.[-(3x)'.sin3x] = -9sin3x.

Suy ra f"\(\dfrac{-\pi}{2}\) = -9sin\(\dfrac{-3\pi}{2}\) = -9;

f"(0) = -9sin0 = 0;

f"\(\dfrac{\pi}{18}\) = -9sin\(\dfrac{\pi}{6}\) = \(\dfrac{-9}{2}\).

9 tháng 5 2017

f(x)=sin3x , f '(x) = 3cos3x .... f ''(x) =-3.3.sin(3x)

suy ra f ''(x) = -9sin(3x) ....

f ''(\(\dfrac{\pi}{2}\)) = -9.sin(3.\(\dfrac{-\pi}{2}\)) =-9

f ''(0\(\)) = -9.sin(3.0\(\)) =0

f ''(\(\dfrac{\pi}{18}\)) = -9.sin(3.\(\dfrac{\pi}{18}\))=\(\dfrac{-9}{2}\)..ok nha

TL
1 tháng 12 2019

Chứng minh các biểu thức đã cho không phụ thuộc vào x.

Từ đó suy ra f'(x)=0

a) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;

b) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;

c) f(x)=\(\frac{1}{4}\)(\(\sqrt{2}\)-\(\sqrt{6}\))=>f'(x)=0

d,f(x)=\(\frac{3}{2}\)=>f'(x)=0

AH
Akai Haruma
Giáo viên
22 tháng 4 2018

Lời giải:

Ta có:

\(f(x)=\sin ^2\left(\frac{\pi}{6}-x\right)+\sin ^2\left(\frac{\pi}{6}+x\right)\)

\(\Rightarrow f'(x)=2\sin \left(\frac{\pi}{6}-x\right).-\cos \left(\frac{\pi}{6}-x\right)+2\sin \left(\frac{\pi}{6}+x\right)\cos \left(\frac{\pi}{6}+x\right)\)

\(f'(x)=-\sin 2\left(\frac{\pi}{6}-x\right)+\sin 2\left(\frac{\pi}{6}+x\right)\)

Áp dụng công thức: \(\sin a-\sin b=2\cos \frac{a+b}{2}\sin \frac{a-b}{2}\) suy ra:

\(f'(x)=-\sin \left(\frac{\pi}{3}-2x\right)+\sin \left(\frac{\pi}{3}+2x\right)\)

\(f'(x)=2\cos \left(\frac{\pi}{3}\right)\sin 2x=\sin 2x\) (đpcm)

 

22 tháng 4 2018

dạ e cảm ơn ạ

9 tháng 4 2017

Ta có f'(x) = 2x, suy ra f'(1) = 2

và φ'(x) = 4 + . cos = 4 + . cos, suy ra φ'(1) = 4.

Vậy = = .

4 tháng 4 2017

a) f'(x) = - 3sinx + 4cosx + 5. Do đó

f'(x) = 0 <=> - 3sinx + 4cosx + 5 = 0 <=> 3sinx - 4cosx = 5

<=> sinx - cosx = 1. (1)

Đặt cos φ = , (φ ∈) => sin φ = , ta có:

(1) <=> sinx.cos φ - cosx.sin φ = 1 <=> sin(x - φ) = 1

<=> x - φ = + k2π <=> x = φ + + k2π, k ∈ Z.

b) f'(x) = - cos(π + x) - sin = cosx + sin.

f'(x) = 0 <=> cosx + sin = 0 <=> sin = - cosx <=> sin = sin

<=> = + k2π hoặc = π - x + + k2π

<=> x = π - k4π hoặc x = π + k, (k ∈ Z).