\(\dfrac{x^2-3x}{x.\left(1-3y\right)}=\dfrac{y^2-3x}{y.\left(1-3x\right)}\).CM
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2017

Phân thức đại số

Phân thức đại số

15 tháng 11 2018

\(a.\dfrac{2\left(x-y\right)}{3y-3x}=\dfrac{-2\left(y-x\right)}{3\left(y-x\right)}=\dfrac{-2}{3}\)

\(b.\dfrac{x-2}{-x}=\dfrac{2-x}{x}=\dfrac{\left(2-x\right)\left(x^2+2x+4\right)}{x\left(x^2+2x+4\right)}=\dfrac{8-x^3}{x\left(x^2+2x+4\right)}\)

\(\dfrac{3x}{x+y}=\dfrac{3x\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}=\dfrac{-3x\left(x-y\right)}{\left(x+y\right)\left(y-x\right)}=\dfrac{-3x\left(x-y\right)}{y^2-x^2}\)

20 tháng 11 2022

c: \(\dfrac{-3x\left(x-y\right)}{y^2-x^2}=\dfrac{3x\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}=\dfrac{3x}{x+y}\)

a: \(\dfrac{2\left(x-y\right)}{3y-3x}=\dfrac{2\left(x-y\right)}{-3\left(x-y\right)}=\dfrac{-2}{3}\)

b: \(\dfrac{8-x^3}{x\left(x^2+2x+4\right)}=\dfrac{\left(2-x\right)\left(x^2+2x+4\right)}{x\left(x^2+2x+4\right)}=\dfrac{2-x}{x}\)

15 tháng 11 2018

a)2(x-y)/(-3)(x-y)=-2/3

b)8-x^3=(2-x)(x^2+2x+4)  => Vế phải =(2-x)/x=(x-2)/-x

c)y^2-x^2=(y+x)(y-x)    bạn đổi dấu rồi rút gọn là được,cũng tương tự như trên ý

a: \(=\left(\dfrac{9}{x\left(x-3\right)\left(x+3\right)}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x\left(x+3\right)}-\dfrac{x}{3\left(x+3\right)}\right)\)

\(=\dfrac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}:\dfrac{3\left(x-3\right)-x^2}{3x\left(x+3\right)}\)

\(=\dfrac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}\cdot\dfrac{3x\left(x+3\right)}{3x-9-x^2}\)

\(=\dfrac{3}{x-3}\cdot\dfrac{-\left(x^2-3x+9\right)}{x^2-3x+9}=\dfrac{-3}{x-3}\)

b: \(=\dfrac{x+1}{x+2}:\left(\dfrac{\left(x+2\right)\left(x+1\right)}{\left(x+3\right)^2}\right)\)

\(=\dfrac{x+1}{x+2}\cdot\dfrac{\left(x+3\right)^2}{\left(x+2\right)\left(x+1\right)}=\dfrac{\left(x+3\right)^2}{\left(x+2\right)^2}\)

c: \(=\dfrac{x^2-2xy+y^2+x^2+2xy+y^2}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{x^2+2xy+y^2}{2xy}\cdot\dfrac{xy}{x^2+y^2}\)

\(=\dfrac{2\left(x^2+y^2\right)}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{\left(x+y\right)^2}{x^2+y^2}\cdot\dfrac{1}{2}\)

\(=\dfrac{\left(x+y\right)}{x-y}\)

28 tháng 6 2017

Phép trừ các phân thức đại số

26 tháng 11 2017

a) \(A=\left(3x-2\right)^2+\left(x+1\right)^2-2\left(x+1\right)\left(3x-2\right)\)

\(\Leftrightarrow A=\left(x+1\right)^2-2\left(x+1\right)\left(3x-2\right)+\left(3x-2\right)^2\)

\(\Leftrightarrow A=\left[\left(x+1\right)-\left(3x-2\right)\right]^2\)

\(\Leftrightarrow A=\left(x+1-3x+2\right)^2\)

\(\Leftrightarrow A=\left(3-2x\right)^2\)

Thay \(x=\dfrac{3}{2}\) vào biểu thức A ta được:

\(\left(3-2.\dfrac{3}{2}\right)^2=\left(3-3\right)^2=0^2=0\)

Vậy giá trị của biểu thức A tại \(x=\dfrac{3}{2}\) là 0

b) \(B=\dfrac{x^2y\left(y-x\right)-xy^2\left(x-y\right)}{3y^2-3x^2}\)

\(\Leftrightarrow B=\dfrac{x^2y\left(y-x\right)+xy^2\left(y-x\right)}{3\left(y^2-x^2\right)}\)

\(\Leftrightarrow B=\dfrac{\left(y-x\right)\left(x^2y+xy^2\right)}{3\left(y-x\right)\left(y+x\right)}\)

\(\Leftrightarrow B=\dfrac{xy\left(y-x\right)\left(x+y\right)}{3\left(y-x\right)\left(y+x\right)}\)

\(\Leftrightarrow B=\dfrac{xy\left(y-x\right)\left(y+x\right)}{3\left(y-x\right)\left(y+x\right)}\)

\(\Leftrightarrow B=\dfrac{xy}{3}\)

Thay \(x=-3\)\(y=\dfrac{1}{2}\) vào biểu thức B ta được:

\(\dfrac{\left(-3\right).\dfrac{1}{2}}{3}=\dfrac{\dfrac{-3}{2}}{3}=\dfrac{\dfrac{-3}{2}}{3}=\dfrac{-1}{2}\)

Vậy giá trị của biểu thức B tại \(x=-3\)\(y=\dfrac{1}{2}\)\(\dfrac{-1}{2}\)

c) \(C=\dfrac{x+1}{x-3}-\dfrac{1-x}{x+3}-\dfrac{2x\left(1-x\right)}{9-x^2}\)

\(\Leftrightarrow C=\dfrac{x+1}{x-3}-\dfrac{1-x}{x+3}+\dfrac{2x\left(1-x\right)}{x^2-9}\)

\(\Leftrightarrow C=\dfrac{x+1}{x-3}-\dfrac{1-x}{x+3}+\dfrac{2x\left(1-x\right)}{\left(x-3\right)\left(x+3\right)}\) MTC: \(\left(x-3\right)\left(x+3\right)\)

\(\Leftrightarrow C=\dfrac{\left(x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{\left(x-3\right)\left(1-x\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{2x\left(1-x\right)}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow C=\dfrac{\left(x+1\right)\left(x+3\right)-\left(x-3\right)\left(1-x\right)+2x\left(1-x\right)}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow C=\dfrac{\left(x^2+3x+x+3\right)-\left(x-x^2-3+3x\right)+\left(2x-2x^2\right)}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow C=\dfrac{x^2+3x+x+3-x+x^2+3-3x+2x-2x^2}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow C=\dfrac{2x+6}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow C=\dfrac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow C=\dfrac{2}{x-3}\)

Thay \(x=5\) vào biểu thức C ta được:

\(\dfrac{2}{5-3}=\dfrac{2}{2}=1\)

Vậy giá trị của biểu thức C tại \(x=5\) là 1

29 tháng 11 2022

a: \(=\dfrac{3x\left(x-y\right)^2\cdot\left(x-1\right)}{3x\left(x-1\right)\cdot\left(x-y\right)^2\cdot2\cdot\left(x-y\right)}=\dfrac{1}{2\left(x-y\right)}\)

b: =(x+1)^2/(x+1)=x+1

c: \(=\dfrac{a\left(a^2-4a+4\right)}{\left(a-2\right)\left(a+2\right)}=\dfrac{a\left(a-2\right)^2}{\left(a-2\right)\left(a+2\right)}=\dfrac{a\left(a-2\right)}{a+2}\)

d: \(=\dfrac{7\left(x+1\right)^2}{3x\left(x+1\right)}=\dfrac{7\left(x+1\right)}{3x}\)

a: \(=\dfrac{x^2+xy-x^2-y^2}{x+y}\cdot\dfrac{x-y+2y}{y\left(x-y\right)}\)

\(=\dfrac{y\left(x-y\right)}{x+y}\cdot\dfrac{x+y}{y\left(x-y\right)}=1\)

b: \(\left(\dfrac{2}{x^2-1}+\dfrac{x^2-3}{3x^2-1}\right):\left[\dfrac{1}{x}-\dfrac{2x\left(x^2-3\right)}{\left(x^2-1\right)\left(3x^2-1\right)}\right]\)

\(=\dfrac{6x^2-2+x^4-4x^2+3}{\left(x^2-1\right)\left(3x^2-1\right)}:\dfrac{\left(x^2-1\right)\left(3x^2-3\right)-2x^2\left(x^2-3\right)}{x\left(x^2-1\right)\left(3x^2-1\right)}\)

\(=\dfrac{x^4+2x^2+1}{\left(x^2-1\right)\left(3x^2-1\right)}\cdot\dfrac{x\left(x^2-1\right)\left(3x^2-1\right)}{3x^4-6x^2+3-2x^4+6x^2}\)

\(=\dfrac{x\left(x^2+1\right)^2}{x^4+3}\)