K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2017

\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=1\Leftrightarrow\left(a+b+c\right)\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)=a+b+c\)\(\Leftrightarrow a+\dfrac{a^2}{b+c}+b+\dfrac{b^2}{c+a}+c+\dfrac{c^2}{a+b}=a+b+c\)

\(\Leftrightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}=0\left(dpcm\right)\)

7 tháng 5 2017

Ta có: \(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}=1\)

=> \(\left(a+b+c\right)\left(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\right)=a+b+c\)

<=> \(\dfrac{a^2}{b+c}+\dfrac{ab}{b+c}+\dfrac{ac}{b+c}+\dfrac{b^2}{a+c}+\dfrac{ab}{a+c}+\dfrac{bc}{a+c}+\dfrac{c^2}{a+b}+\dfrac{ac}{a+b}+\dfrac{bc}{a+b}=a+b+c\)

<=> \(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}+a\left(\dfrac{b}{b+c}+\dfrac{c}{b+c}\right)+b\left(\dfrac{a}{a+c}+\dfrac{c}{a+c}\right)+c\left(\dfrac{a}{a+b}+\dfrac{b}{a+b}\right)=a+b+c\)

<=> \(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}+a+b+c=a+b+c\)

<=> \(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}=0\)

Vậy \(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}=1\) thì \(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}=0\)

7 tháng 5 2017

cảm ơn bn nhiều nha, bn giỏi quá

AH
Akai Haruma
Giáo viên
10 tháng 4 2018

Lời giải:

Ta có:

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)

\(\Rightarrow \left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)(a+b+c)=a+b+c\)

\(\Leftrightarrow \frac{a^2}{b+c}+\frac{a(b+c)}{b+c}+\frac{b(c+a)}{c+a}+\frac{b^2}{c+a}+\frac{c(a+b)}{a+b}+\frac{c^2}{a+b}=a+b+c\)

\(\Leftrightarrow \frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+a+b+c=a+b+c\)

\(\Leftrightarrow \frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)

Ta có đpcm.

21 tháng 3 2017

Bài 1:a,b,c ba cạnh tam giác => a,b,c dương

\(\left\{{}\begin{matrix}a+c>b\\a+b>c\\b+c>a\end{matrix}\right.\) ta có: \(\dfrac{x}{y}< \dfrac{x+p}{y+p}\forall_{x,y,p>0\&x< y}\)

\(VT=\dfrac{a}{a+b}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a+c}{a+b}+\dfrac{b}{c+a}< \dfrac{a+c+c}{a+b+c}+\dfrac{b+b}{a+b+c}=\)

\(=\dfrac{a+b+c+b+c}{a+b+c}< \dfrac{\left(a+b+c\right)+\left(A+b+c\right)}{a+b+c}< \dfrac{2\left(b+a+c\right)}{a+b+c}=2=VP\)

p/s: đề sao làm vậy:

mình nghi đề phải thế này: \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< 2\) cách làm đơn giản hơn

22 tháng 3 2017

hướng dẫn bài 2,3 giúp mình với

17 tháng 3 2018

a)Svac-so:

\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{\left(a+b+c\right)^2}{b+c+c+a+a+b}=\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2\left(đpcm\right)}\)

b)\(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}\ge\dfrac{2}{ab+1}\)

\(\Leftrightarrow\dfrac{1}{a^2+1}-\dfrac{1}{ab+1}+\dfrac{1}{b^2+1}-\dfrac{1}{ab+1}\ge0\)

\(\Leftrightarrow\dfrac{ab+1-a^2-1}{\left(a^2+1\right)\left(ab+1\right)}+\dfrac{ab+1-b^2-1}{\left(b^2+1\right)\left(ab+1\right)}\ge0\)

\(\Leftrightarrow\dfrac{a\left(b-a\right)}{\left(a^2+1\right)\left(ab+1\right)}+\dfrac{b\left(a-b\right)}{\left(b^2+1\right)\left(ab+1\right)}\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\dfrac{b}{\left(b^2+1\right)\left(ab+1\right)}-\dfrac{a}{\left(a^2+1\right)\left(ab+1\right)}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\dfrac{b\left(a^2+1\right)-a\left(b^2+1\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\dfrac{a^2b+b-ab^2-a}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\dfrac{ab\left(a-b\right)-\left(a-b\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\cdot\dfrac{ab-1}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\ge0\)(luôn đúng)

29 tháng 4 2018

Bài 1:

\(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\ge a+b+c\) với a,b,c > 0

Áp dụng BĐT Chauchy cho 2 số không âm, ta có:

\(\dfrac{bc}{a}+\dfrac{ac}{b}=c\left(\dfrac{b}{a}+\dfrac{a}{b}\right)\ge c\sqrt{\dfrac{b}{a}.\dfrac{a}{b}}=2c\)

\(\dfrac{ac}{b}+\dfrac{ab}{c}=a\left(\dfrac{c}{b}+\dfrac{b}{c}\right)\ge a\sqrt{\dfrac{c}{b}.\dfrac{b}{c}}=2a\)

\(\dfrac{ab}{c}+\dfrac{bc}{a}=b\left(\dfrac{a}{c}+\dfrac{c}{a}\right)\ge b\sqrt{\dfrac{a}{c}.\dfrac{c}{a}}=2b\)

Cộng vế theo vế ta được:

\(2\left(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\right)\ge2\left(a+b+c\right)\)

\(\Leftrightarrow\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\ge a+b+c\)

26 tháng 9 2019

Sai thì bỏ qua ( bạn bè mà ) !

Nếu \(a+b+c=0\Rightarrow\hept{\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}}\)

\(\Rightarrow\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=-1-1-1=-3\)(vô lí )

\(\Rightarrow a+b+c\ne0\)

Ta có : 

\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=1\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)=a+b+c\)

Đặt a + b + c = H 

\(\Rightarrow\frac{a^2}{b+c}+\frac{ab}{a+c}+\frac{ac}{a+b}+\frac{b^2}{a+c}+\frac{ab}{b+c}+\frac{bc}{a+b}+\frac{c^2}{b+a}+\frac{ac}{c+b}+\frac{bc}{a+c}=H\) 

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{b+a}+\left(\frac{ab}{a+c}+\frac{bc}{a+c}\right)+\left(\frac{ac}{a+b}+\frac{bc}{a+b}\right)+\left(\frac{ab}{b+c}+\frac{ac}{c+b}\right)=H\)

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{b+a}+a+b+c=H\)( Chỗ này làm hơi tắt bỏ qua nha )

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{b+a}=H-\left(a+b+c\right)\)

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{b+a}=0\left(đpcm\right)\)

26 tháng 9 2019

ĐK:....

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=a+b+c\)

\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+a+b+c=a+b+c\)(nhân vào rồi tách)

\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)

 Việt Hoàng _ TTH (*Yonko Team*): Mình chưa xem kỹ nhưng có lẽ hướng làm bạn là sai òi nhé!

Áp dụng bđt AM-GM: \(\dfrac{a}{b^2}+\dfrac{1}{a}\ge2\sqrt{\dfrac{a}{b^2a}}=2\sqrt{\dfrac{1}{b^2}}=\dfrac{2}{b}\) \(\dfrac{b}{c^2}+\dfrac{1}{b}\ge2\sqrt{\dfrac{b}{c^2b}}=2\sqrt{\dfrac{1}{c^2}}=\dfrac{2}{c}\) \(\dfrac{c}{a^2}+\dfrac{1}{c}\ge2\sqrt{\dfrac{c}{a^2c}}=2\sqrt{\dfrac{1}{a^2}}=\dfrac{2}{a}\) Cộng theo vế: \(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\Leftrightarrow\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)Dấu "=" xảy ra khi: \(a=b=c\)

17 tháng 5 2018

\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2\) hả Lặng Thầm

18 tháng 6 2017

Áp dụng bất đẳng thức AM - GM ta có:

\(\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\le\dfrac{2}{2\sqrt{ab}}+\dfrac{2}{2\sqrt{bc}}+\dfrac{2}{2\sqrt{ac}}\)

\(=\dfrac{1}{\sqrt{ab}}+\dfrac{1}{\sqrt{bc}}+\dfrac{1}{\sqrt{ca}}\le\dfrac{1}{\sqrt{a^2}}+\dfrac{1}{\sqrt{b^2}}+\dfrac{1}{\sqrt{c^2}}\)

\(=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

Dấu " = " xảy ra khi \(a=b=c\)

Vậy...

18 tháng 6 2017

Áp dụng BĐT \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\). Tương tự cho 2 BĐT còn lại có:

\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c};\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{a+c}\)

Cộng theo vế 3 BĐT trên ta có:

\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{4}{a+b}+\dfrac{4}{b+c}+\dfrac{4}{c+a}\)

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\)

Đẳng thức xảy ra khi \(a=b=c\)