K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
5 tháng 2 2024

Lời giải:

Áp dụng TCDTSBN:

$\frac{a+b+c-d}{d}=\frac{b+c+d-a}{a}=\frac{c+d+a-b}{b}=\frac{d+a+b-c}{c}$

$=\frac{a+b+c-d+b+c+d-a+c+d+a-b+d+a+b-c}{d+a+b+c}$

$=\frac{2(a+b+c+d)}{a+b+c+d}=2$
$\Rightarrow a+b+c-d=2d; b+c+d-a=2a; c+d+a-b=2b; d+a+b-c=2c$

$\Rightarrow a+b+c=3d; b+c+d=3a; c+d+a=3b; d+a+b=3c$

Khi đó:

\(P=\frac{a+b+c}{a}.\frac{b+c+d}{b}.\frac{c+d+a}{c}.\frac{a+b+d}{d}\\ =\frac{3d}{a}.\frac{3a}{b}.\frac{3b}{c}.\frac{3c}{d}=81\)

24 tháng 8 2017

M=4 nha
Tick mình nhé!ok

22 tháng 9 2017

tks bn

10 tháng 3 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}=\frac{2a+b+c+d-a-2b-c-d}{a-b}=1\)

\(\Rightarrow\left\{\begin{matrix}-a=b+c+d\\-b=a+c+d\\-c=b+c+d\\-d=a+b+c\end{matrix}\right.\)\(\Rightarrow a=b=c=d\)

\(M=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{a+d}{b+c}\)

\(\Rightarrow M=\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}\)

\(\Rightarrow M=1+1+1+1\)

\(\Rightarrow M=4\)

Vậy \(M=4\)

24 tháng 4 2017

thiếu 1 th nhá bạn

30 tháng 8 2017

a, Từ \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

\(\Rightarrow ad=bc\)

\(ac-ad=ac-bc\)

\(a\left(c-d\right)=c\left(a-b\right)\)

\(\Rightarrow\dfrac{a}{a-b}=\dfrac{c}{c-d}\Rightarrow\dfrac{c-d}{c}=\dfrac{a-b}{a}\Leftrightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)

b, Từ \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\left(1\right)\)

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{b-c}\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)

c, Từ \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow ad=bc\)

\(\Rightarrow ad+ac=bc+ac\\ a\left(c+d\right)=c\left(a+b\right)\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{a+b}{c+d}\Rightarrow\dfrac{a}{a+b}=\dfrac{c}{c+d}\)

30 tháng 8 2017

Đặt\(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

a) \(\dfrac{a-b}{a}=\dfrac{bk-b}{bk}=\dfrac{b\left(k-1\right)}{bk}=\dfrac{k-1}{k}\)

\(\dfrac{c-d}{c}=\dfrac{dk-d}{dk}=\dfrac{d\left(k-1\right)}{dk}=\dfrac{k-1}{k}\)

\(\Rightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)

b) \(\dfrac{a+b}{a-b}=\dfrac{bk+b}{bk-b}=\dfrac{b\left(k+1\right)}{b\left(k-1\right)}=\dfrac{k+1}{k-1}\)

\(\dfrac{c+d}{c-d}=\dfrac{dk+d}{dk-d}=\dfrac{d\left(k+1\right)}{d\left(k-1\right)}=\dfrac{k+1}{k-1}\)

\(\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)

c) \(\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{bk}{b\left(k+1\right)}=\dfrac{k}{k+1}\)

\(\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{dk}{d\left(k+1\right)}=\dfrac{k}{k+1}\)

\(\Rightarrow\dfrac{a}{a+b}=\dfrac{c}{c+d}\)

26 tháng 11 2017

Theo đề bài, ta có:

\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\)

\(\dfrac{2a+b+c+d}{a}-1=\dfrac{a+2b+c+d}{b}-1=\dfrac{a+b+2c+d}{c}-1=\dfrac{a+b+c+2d}{d}-1\)

\(\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}\) vì a,b,c,d khác 0

\(\Rightarrow a=b=c=d\)

\(\Rightarrow M=1+1+1+1=4\)

NV
3 tháng 1 2019

TH1:

\(\dfrac{a}{b+c+d}=\dfrac{b}{c+d+a}=\dfrac{c}{d+a+b}=\dfrac{d}{a+b+c}=\dfrac{a+b+c+d}{3\left(a+b+c+d\right)}=\dfrac{1}{3}\)

\(\Rightarrow\left\{{}\begin{matrix}3a=b+c+d\\3b=a+c+d\\3c=a+b+d\\3d=a+b+c\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3\left(a-b\right)=b-a\\3\left(b-c\right)=c-b\\3\left(c-d\right)=d-c\\3\left(d-a\right)=a-d\end{matrix}\right.\) \(\Rightarrow a=b=c=d\)

\(\Rightarrow P=\dfrac{2a}{2a}+\dfrac{2a}{2a}+\dfrac{2a}{2a}+\dfrac{2a}{2a}=1+1+1+1=4\)

TH2: \(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{a+b+c}=\dfrac{a-b}{a-a}=-1\)

\(\Rightarrow-a=b+c+d\Rightarrow a+b+c+d=0\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=-\left(c+d\right)\\a+c=-\left(b+d\right)\\a+d=-\left(b+c\right)\end{matrix}\right.\)

\(\Rightarrow P=\dfrac{-\left(c+d\right)}{c+d}+\dfrac{b+c}{-\left(b+c\right)}+\dfrac{c+d}{-\left(c+d\right)}+\dfrac{-\left(b+c\right)}{b+c}=-1+-1+-1+-1=-4\)

Vậy \(\left[{}\begin{matrix}P=4\\P=-4\end{matrix}\right.\)

3 tháng 1 2019

thak kiu bn nhaeoeo

6 tháng 11 2017

\(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{a+b+c}=\dfrac{a+b+c+d}{3\left(a+b+c+d\right)}\dfrac{1}{3}\)(vìa+b+c+d\(\ne\)0)

=>3a=b+c+d: 3b=a+c+d=>3a-3b=b-a

=>3(a-b)=-(a-b)=>4(a-b)=0=>a=b

Tương tự => a=b=c=d=> A=4

3 tháng 2 2018

Ta có: \(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{a+b+c}=\dfrac{a+b+c+d}{3\left(a+b+c+d\right)}=\dfrac{1}{3}\)

Ta có: \(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{a+b}{a+b+2\left(c+d\right)}=\dfrac{1}{3}\)

\(\Rightarrow3\left(a+b\right)=\left(a+b\right)+2\left(c+d\right)\)

\(\Rightarrow2\left(a+b\right)=2\left(c+d\right)\)

\(\Rightarrow a+b=c+d\)

\(\Rightarrow\dfrac{a+b}{c+d}=1\)

Tương tự:\(\dfrac{b+c}{a+d}=1;\dfrac{c+d}{a+b}=1;\dfrac{d+a}{b+c}=1\)

Vậy A=4.

5 tháng 11 2018

ta có \(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{a+b+c}\)

=> \(\left(\dfrac{a}{b+c+d}+1\right)=\left(\dfrac{b}{a+c+d}+1\right)=\left(\dfrac{c}{a+b+d}+1\right)=\left(\dfrac{d}{a+b+c}+1\right)\)

(=) \(\dfrac{a+b+c+d}{b+c+d}=\dfrac{a+b+c+d}{a+c+d}=\dfrac{a+b+c+d}{a+b+d}=\dfrac{a+b+c+d}{a+b+c}\)

*Nếu a+b+c+d=0

=> \(\left\{{}\begin{matrix}a+b=-\left(c+d\right)\\b+c=-\left(a+d\right)\end{matrix}\right.\)

=> M=(-1)+(-1)+(-1)+(-1)=(-4)

Nếu a+b+c+d\(\ne\)0

=> a=b=c=d

=> M=1+1+1+1=4

5 tháng 11 2018

Xét a+b+c+d=0

\(\Rightarrow\)a=-(b+c+d).Thay vào \(\dfrac{a}{b+c+d}\)ta có

\(\dfrac{-\left(b+c+d\right)}{b+c+d}\)=-1.Làm tương tự như thế ta có

M=-1+(-1)+(-1)+(-1)=-4

Xét a+b+c+d\(\ne\)0

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\dfrac{a}{b+c+d}\)=\(\dfrac{b}{a+c+d}\)=\(\dfrac{c}{a+b+d}\)=\(\dfrac{d}{b+c+a}\)

=\(\dfrac{a+b+c+d}{2\cdot\left(a+b+c+d\right)}\)=\(\dfrac{1}{2}\)

\(\dfrac{a}{b+c+d}\)=\(\dfrac{1}{2}\)

\(\Rightarrow\)2a=b+c+d

\(\Rightarrow\)3a=a+b+c+d\(\left(1\right)\)

\(\dfrac{b}{a+c+d}\)=\(\dfrac{1}{2}\)

\(\Rightarrow\)2b= a+c+d

\(\Rightarrow\)3b=a+b+c+d\(\left(2\right)\)

\(\dfrac{c}{a+b+d}\)=\(\dfrac{1}{2}\)

\(\Rightarrow\)2c=a+b+d

\(\Rightarrow\)3c=a+b+c+d\(\left(3\right)\)

\(\dfrac{d}{b+c+a}\)=\(\dfrac{1}{2}\)

\(\Rightarrow\)2d=b+c+a

\(\Rightarrow\)3d=a+b+c+d\(\left(4\right)\)

Từ\(\left(1\right)\),\(\left(2\right)\),\(\left(3\right)\),\(\left(4\right)\)

\(\Rightarrow\)3a=3b=3c=3d

\(\Rightarrow\)a=b=c=d.Khi đó

M=\(\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}\)

=1+1+1+1

=4

Vậy...

Mình trình bày hơi xấu các bạn thông cảm1!

ha