K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAH vuông tại A và ΔBMH vuông tại M có

BH chung

\(\widehat{ABH}=\widehat{MBH}\)

Do đó: ΔBAH=ΔBMH

b: ΔBAH=ΔBMH

=>BA=BM và HA=HM

Ta có: BA=BM

=>B nằm trên đường trung trực của AM(1)

ta có: HA=HM

=>H nằm trên đường trung trực của AM(2)

Từ (1),(2) suy ra BH là đường trung trực của AM

c: Xét ΔBMN vuông tại M và ΔBAC vuông tại A có

BM=BA

\(\widehat{MBN}\) chung

Do đó: ΔBMN=ΔBAC

=>BN=BC

Xét ΔBNC có \(\dfrac{BA}{BN}=\dfrac{BM}{BC}\)

nên AM//NC

d: Xét ΔBNC có

NM,CA là các đường cao

NM cắt CA tại H

Do đó: H là trực tâm của ΔBNC

=>BH\(\perp\)CN

5 tháng 5 2024

Mình đang gấp lắm . Ngày mai , mình nộp bài rồi 

:((

 

a, Xét tam giác vuông ABH và tam giác vuông MBH có

góc MBH = góc ABH (do BH là phân giác góc B)

HB chung

=> Tam giác vuông ABH = tam giác vuông MBH ( ch - gn )

b, Từ câu a, sẽ có HM = HA ( cạnh tương ứng)

=> H thuộc trung trực của AM(1)

Ta còn có BM = BA ( cạnh tương ứng )

=> B thuộc trung trực của AM (2)

Từ (1) và (2) suy ra BH là trung trực của AM

c, Xét tam giác BCN

có NM vuông góc với BC => NM là đường cao ứng với cạnh BC

có CA vuông góc với BN => CA là đường cao ứng với cạnh BN

mà chúng giao nhau ở H nên H là trực tâm 

nên BH là đường cao ứng với cạnh CN

=> BH vuông góc với CN mà BH còn vuông góc với AM (BH là trung trực của AM)

=> CN song song với AM

d, Từ câu trên ta đã chứng minh BH vuông góc vói CN 

24 tháng 4 2017

a) xét tam giác ABH và taam giác MBH có :

AB=BH(BE là tia phân giác)

ABH=HBM(BE là tia phân giác)

BH cạnh chung

=>tam giác ABH =tam giácHBE (c.g c)

b)=>tam giác ABM cân tại B mà BH là phân giác 

=>BE là trung trực

=>AHB=MHB=90 độ

c)vì AMC và góc MNC là cặp góc so le trong

=>AM//NC

d)Vì AM//NC(theo c)

mà BH vuông góc với AM

=>BH vông góc với NC (T/C từ vuông góc đến song song)

a) xét tam giác ABH và taam giác MBH có :
AB=BH(BE là tia phân giác)
ABH=HBM(BE là tia phân giác)
BH cạnh chung
=>tam giác ABH =tam giácHBE (c.g c)
b)=>tam giác ABM cân tại B mà BH là phân giác 
=>BE là trung trực
=>AHB=MHB=90 độ
c)vì AMC và góc MNC là cặp góc so le trong
=>AM//NC
d)Vì AM//NC(theo c)
mà BH vuông góc với AM
=>BH vông góc với NC (T/C từ vuông góc đến song song)

26 tháng 4 2021

mình xin hình ạ

 

26 tháng 4 2021

a)xét tam giác AHB và tam giác MBH có:BH chung,góc BAH =góc BMH=90*,ABH=MBH=> hai tam giác = nhau (ch-gn)

b)tam giác AHB và tam giác MBH=>BA=BM=>tam giác BAM cân tại B => tam giác BAM cân=>BH là pg và cũng là đường cao => BH là đường trung trực của đoạn thẳng AM    

c) tam giác BCN có NM,AC là đường cao mà NM cắt AC tại H => H là trung tâm=>BH vuông góc NC,BH vuông góc với AM =>AM//CN 

MÌNH KO BIẾT LÀM d NHÉ

19 tháng 2 2018

a, Xét tam giác vuông ABH và tam giác vuông MBH có góc MBH = góc ABH (do BH là phân giác góc B) HB chung => Tam giác vuông ABH = tam giác vuông MBH ( ch - gn )

b, Từ câu a, sẽ có HM = HA ( cạnh tương ứng) => H thuộc trung trực của AM(1) Ta còn có BM = BA ( cạnh tương ứng ) => B thuộc trung trực của AM (2) Từ (1) và (2) suy ra BH là trung trực của AM

c, Xét tam giác BCN có NM vuông góc với BC => NM là đường cao ứng với cạnh BC có CA vuông góc với BN => CA là đường cao ứng với cạnh BN mà chúng giao nhau ở H nên H là trực tâm  nên BH là đường cao ứng với cạnh CN => BH vuông góc với CN mà BH còn vuông góc với AM (BH là trung trực của AM) => CN song song với AM

d, Từ câu trên ta đã chứng minh BH vuông góc vói CN

19 tháng 2 2018

(Bạn tự vẽ hình giùm)

a/ \(\Delta ABH\)vuông và \(\Delta MBH\)vuông có: Cạnh huyền BH chung

\(\widehat{ABH}=\widehat{MBH}\)(BH là đường phân giác của \(\Delta ABC\))

=> \(\Delta ABH\)vuông = \(\Delta MBH\)vuông (ch - gn) (đpcm)

1 tháng 8 2020

A B C H M N

a, Xét hai tam giác vuông ABH và tam giác vuông MBH có :

               góc BAH = góc BMH = 90độ

               cạnh BH chung

               góc ABH = góc MBH ( vì BH là tia phân giác góc B )

Do đó : tam giác ABH = tam giác MBH ( cạnh huyền - góc nhọn )

b,Theo câu a : tam giác ABH = tam giác MBH 

\(\Rightarrow\)  BA = BM nên B thuộc đường trung trực của AM 

và HA = HM nên H thuộc đường trung trực của AM 

\(\Rightarrow\) BH thuộc đường trung trực của AM

Vậy BH vuông góc với AM .

c, Xét tam giác AHN và tam giác MHC có :

              góc AHN = góc MHC ( đối đỉnh )

              AH = MH ( theo câu b )

              góc  HAN = góc HMC = 90độ 

Do đó : tam giác AHN = tam giác MHC ( g.c.g )

\(\Rightarrow\) AN = MC ( cạnh tương ứng )

mà AB = MB 

Suy ra : AN + AB = MC + MB 

\(\Rightarrow\) BN = BC 

Vậy tam giác BCN cân tại B 

\(\Rightarrow\widehat{N}=\widehat{C}=\frac{180^0-\widehat{B}}{2}\)  ( 1 )

Ta lại có : Tam giác ABM cân tại B ( vì AB = MB theo câu b )

\(\Rightarrow\widehat{BAM}=\widehat{BMA}=\frac{180^0-\widehat{B}}{2}\)  ( 2 )

Từ ( 1 ) và ( 2 ) suy ra :

góc N = góc C = góc BAM = góc BMA 

mà góc N = góc BAM ( ở vị trí đồng vị )

\(\Rightarrow\)AM // CN .

Học tốt