\(\Delta\) ABC, vẽ về phía ngoài của \(\Delta\) ABC các t...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2018

MAX khó quá!!!!!!!!!!!!!!!!

câu này nâng cao

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

21 tháng 3 2017

a) 

Xét tam giác DAC và tam giác EAB 

có : AB = AD (GT) 

     AE =AC (GT)

    góc DAC =góc EAB (vì DAC = góc A+90 độ ;EAb = góc A +90 độ )

\(\Rightarrow\)tam giác DAC = tam giác BAE ( c.g.c)

\(\Rightarrow DC=CE\)

gọi giao điểm của DC và BE là I 

Xét tam giác DIB 

có : góc IDB + gócDBI =góc IDB + góc ABE 

mà góc ABE = góc ADC (GT) 

\(\Rightarrow\)góc IDB+góc ABE =90 độ (do tam giác DAB cân)

\(\Rightarrow\)góc DIB vuông  

mà hai đường thẳng DC và BE cắt nhau tại I \(\Rightarrow\)DC vuông góc với BE

b) 

xét tam giác BIC (góc BIC =1v) 

\(\Rightarrow\)\(BI^2+CI^2=BC^2\)(1) 

xét tam giác DIE (góc DIE=1v)

\(\Rightarrow DI^2+EI^2=DE^2\)(2) 

xét tam giác DIB (góc DIB = 1v) 

\(\Rightarrow DI^2+BI^2=DB^2\)(3) 

xét tam giác EIC ( góc EIC=1v)

\(\Rightarrow EI^2+CI^2=EC^2\)(4) 

từ (1) , (2) , (3) , (4) \(\Rightarrow BD^2+CE^2=BC^2+DE^2\)

21 tháng 3 2017

Giả sử K là trung điểm của BC mà theo ý c ta lại có đường thẳng qua A vuông góc với DE cắt BC tại K nên ta có GT : 

nếu : đường thẳng qua A mà vuông góc với DE thì ta có BK=CK và ngược lại 

Nên ở đây ta dùng chứng minh ngược tức là nếu BK=CK thì đường thẳng qua A sẽ vuông góc với DE 

Giải : 

Gọi giao điểm của DE và đường thẳng qua nó là X,trên tia đối của tia IK lấy điển Y sao cho HI=HY

 xét tam giác BKY và tam giác AKC 

có : góc BKY = góc AKC (đối đỉnh) 

       BK=KC (GT) 

       AK=KY (GT)

\(\Rightarrow\)tam giác BKY=tam giác AKC ( c.g.c)

\(\Rightarrow\)BY=AC\(\Leftrightarrow\)BY=AE

xét tam giác BYA và tam giác PAE

có PA=BA(GT)

    BY=AE(CMT)

    mà góc DAE+góc BAC=360-90-90=180 độ 

   mặt khác ta lại có : tam giác BKY bằng tam giác AKC 

\(\Rightarrow\)góc BYK = góc CAK 

mà 2 góc này có vị trí so le 

\(\Rightarrow\)BY song song với AC

\(\Rightarrow\)góc ABY + góc BAC =180 độ ( hai góc so le trong )

\(\Rightarrow\)góc ABY = góc DAE (cùng kề với BAC ) 

\(\Rightarrow\)tam giác BYA = tam giác PAE (c.g.c)

\(\Rightarrow\)góc BAY = góc EDA (hai góc tương ứng )

\(\Rightarrow\)góc YAD + góc YDA=góc YAD + góc BAY

\(\Leftrightarrow\)góc YAD + góc BAY + 90 độ = 180 độ

\(\Rightarrow\)góc YAD + góc BAY = 90 độ

\(\Rightarrow\)YK sẽ vuông góc với DE

Vậy từ chứng minh trên ta thấy khi K là trung điểm của BC thi đường thẳng đi qua điểm K và A thì sẽ vuông góc với DE và ngược lại