\(\Delta ABC\)vuông ở A. Trên tia đối của tia AC lấy điểm D sao cho AD=AC

a) Ch...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2020

ta có : CABˆ+ DAB^ = 180( 2 góc kề bù )

=> 90 + DAB^ =180

=> DAB^ = 90

Xét △ABC và △ABD có:

AD = AC ( gt )

CABˆ = DABˆ=90

AB cạnh chung

=> △ABC = △ABD ( c-g-c )

=> DB = CB

ABDˆ= ABC^ <=> MBDˆ = MBC^

b ) Xét △MBD và △MBC có :

MAD^ = MBC^ ( cmt )

DB = DC ( cmt )

MB cạnh chung

=> △MBD = △MBC ( c-g-c ).

8 tháng 5 2020

a) Ta có: Tam giác ABC vuông=> góc BAC= góc BAD=90

Xét tam giác ABC và ABD có

AB: cạnh chung

góc BAC=DAB

AC=AD

=> ΔABC = ΔABD(c.g.c)

b. A là trung điểm DC=> MA là trung tuyến tam giác MDC

Mặt khác MA vuông góc DC=> Tam giác MCD cân tại M=> MC=MD

Xét ΔMBD và ΔMBC:

MB: cạnh chung

MD=MC(c/m trên)

BC=BD( ΔABC = ΔABD)

=> ΔABC = ΔABD

22 tháng 10 2016

Giúp mk đi khocroi

AH
Akai Haruma
Giáo viên
12 tháng 11 2017

Lời giải:

a)

Ta có: \(\angle BAD=180^0-\angle BAC=180^0-90^0=90^0\)

\(\Rightarrow \angle BAD=\angle BAC\)

Xét tam giác $ABC$ và $ABD$ có:

\(\left\{\begin{matrix} AC=AD\\ \angle BAC=\angle BAD(cmt)\\ BA -\text{chung }\end{matrix}\right.\Rightarrow \triangle ABC=\triangle ABD(c.g.c)\)

Ta có đpcm
b) Có:

\(\triangle ABC=\triangle ABD\Rightarrow BC=BD\) và \(\angle ABC=\angle ABD\Leftrightarrow \angle CBM=\angle DBM\)

Xét tam giác $MBD$ và $MBC$ có:

\(\left\{\begin{matrix} BC=BD(cmt)\\ \angle CBM=\angle DBM(cmt)\\ MB -\text{chung }\end{matrix}\right.\Rightarrow \triangle MBD=\triangle MBC(c.g.c)\)

Ta có đpcm.

a: Xét ΔABC vuông tại A và ΔABD vuông tại A có

AB chung

AC=AD

Do đó: ΔABC=ΔABD

b: Xét ΔMDC có

MA là đường cao

MA là đường trung tuyến

DO đó: ΔMDC cân tại M

Xét ΔMDB và ΔMCB có

MD=MC

DB=CB

MB chung

Do đo: ΔMDB=ΔMCB

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân. Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối...
Đọc tiếp

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân.

Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho MD = MA. a/ Chứng minh : AB = CD. b/ Chứng minh: \(\Delta BAC=\Delta DAC\). c/ Chứng minh : \(\Delta ABM\) là tam giác đều.

Câu 6. Cho tam giác ABC vuông ở B, gọi M là trung điểm của BC . Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a/ \(\Delta ABM=\Delta ECM\). b/ AC > CE. c/ góc BAM>góc MAC

4
1 tháng 5 2020

(tự vẽ hình )

câu 4:

 a) có AB2 + AC= 225

BC= 225

Pytago đảo => \(\Delta ABC\)vuông tại A

b) Xét \(\Delta MAB\)và \(\Delta MDC\)

MA = MD (gt)

BM = BC ( do M là trung điểm của BC ) 

\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )

=> \(\Delta MAB\)\(\Delta MDC\) (cgc)

c) vì \(\Delta MAB\)\(\Delta MDC\)

=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)

=> AB// DC

lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C

Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:

AB =CD (cmt)

AK = KC ( do k là trung điểm của AC )

=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)

=> KB = KD

d. do KB = KD => \(\Delta KBD\)cân tại K

=> \(\widehat{KBD}=\widehat{KDB}\)(1)

có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)

=> MD = 7.5

mà MB = 7.5

=> MB = MD 

=> \(\Delta MBD\)cân tại M

=> \(\widehat{MBD}=\widehat{MDB}\)(2)

Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)

Xét \(\Delta KBI\)và \(\Delta KDN\)có:

\(\widehat{KBI}=\widehat{KDN}\)(cmt)

\(\widehat{KBD}\)chung

KD =KB (cmt) 

=> \(\Delta KBI\)\(\Delta KDN\)(gcg)

=> KN =KI 

=. đpcm

1 tháng 5 2020

câu 5: 

a) Xét \(\Delta ABM\)và \(\Delta MDC\):

MA=MD(gt)

MB=MC (M là trung điểm của BC)

\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )

=> \(\Delta BMA=\Delta CMD\)(cgc)

b) Xét \(\Delta\)vuông ABC 

có AM là đường trung tuyến của tam giác 

=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )

=> AM = BM = MC 

có MA =MD => AM = MD =MB =MC

=> BM +MC = AM +MD hay BC =AD

Xét \(\Delta BAC\)và \(\Delta DCA\)

AB =DC

AC chung

BC =DC

=> \(\Delta BAC\)\(\Delta DCA\)(ccc)

c. Xét \(\Delta ABM\)

BM=AM

\(\widehat{ABM}\)= 600

=> đpcm