Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác HDEI có
\(\widehat{EDH}=\widehat{DHI}=\widehat{EIH}=90^0\)
=>HDEI là hình chữ nhật
b:
Xét ΔAHD có \(\widehat{AHD}=90^0\) và HA=HD
nên ΔAHD vuông cân tại H
=>\(\widehat{ADH}=45^0\)
Xét tứ giác AEDB có
\(\widehat{EAB}+\widehat{EDB}=90^0+90^0=180^0\)
=>AEDB là tứ giác nội tiếp
=>\(\widehat{AEB}=\widehat{ADB}=\widehat{ADH}=45^0\)
Xét ΔAEB vuông tại A có \(\widehat{AEB}=45^0\)
nên ΔAEB vuông cân tại A
=>AE=AB
a) Kẻ EK vuông góc với AH
Ta có: góc KHD=góc EDH=90 độ
Mà góc KHD và góc EDH là 2 góc đồng vị nên KH//DE
Lại có: góc HKE=góc DHK=90 độ
Mà góc HKE và góc DHK là 2 góc đồng vị nên HD//KE
Vì KH//DE; HD//KE nên HD=KE( tính chất đoạn chắn)
Mà HD=AH nên KE=AH
Vì tam giác ABC vuông tại A nên góc BAH+ góc HAC=90 độ
Vì tam giác AKE vuông tại K nên góc KAE+góc KEA=90 độ
Do đó: góc BAH= góc KEA
Xét tam giác AHB và tam giác EKA có:
góc AHB=góc EKA=90 độ
AH=KE (cmt)
góc BAH=góc AEK (cmt)
=> tam giác AHB=tam giác EKA (g.c.g)
=> AB=AE
b) Vì M là trung điểm của cạnh BE nên AM là đường trung tuyến của tam giác ABE
Mà tam giác ABE vuông tại A nên AM=\(\frac{1}{2}\)BE (1)
M là trung điểm của BE nên DM là đường trung tuyến của tam giác BDE
Mà tam giác BDE vuông tại D nên DM=\(\frac{1}{2}\)BE (2)
Từ (1) và (2) => AM=DM
Xét tam giác HMA và tam giác HMD có:
HM:chung
AH=HD
AM=DM
=> tam giác HMA=tam giác HMD ( c.c.c)
=> góc AHM=góc DHM = \(\frac{1}{2}\)AHD
Mà góc AHD=90 độ nên góc AHM= 90 độ :2 = 45 độ
Bạn tự vẽ hình nhé!
a) Xét tam giác ADC và tam giác BEC có:
\(\widehat{C}\)chung
\(\frac{CD}{CE}=\frac{CA}{CB}\)(2 tam giác vuông CDE và CAB đồng dạng)
=> Tam giác ADC đồng dạng với tam giác BEC (cgc) (đpcm)
b) Tam giác AHD vuông tại H (gt)
=> \(\widehat{BEC}=\widehat{ADC}=135^o\)
Nên \(\widehat{AEB}=45^o\)do đó tam giác ABE vuông tại A
=> BE=\(AB\sqrt{2}=3\sqrt{2}\)
Nguồn: Đặng Thị Nhiên
c) Tam giác ABE vuông tại A nên tia AM là phân giác BAC
\(\Rightarrow\frac{GB}{GC}=\frac{AB}{AC}\)
Vì tam giác ABC đồng dạng tam giác DEC nên:
\(\frac{AB}{AC}=\frac{ED}{DC}=\frac{AH}{HC}=\frac{HD}{HC}\)(DE//AH)
Do đó: \(\frac{GB}{GC}=\frac{HD}{HC}\Rightarrow\frac{GB}{GB+GC}=\frac{HD}{HD+HC}\Rightarrow\frac{GB}{GC}=\frac{AH}{AH+HC}\left(đpcm\right)\)
Nguồn: Đặng Thị Nhiên
Câu hỏi của Trần Hữu Phước - Toán lớp 8 - Học toán với OnlineMath
a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc ACB chung
Do dó ΔCDE đồng dạng với ΔCAB
=>CD/CA=CE/CB
=>CD/CE=CA/CB
=>ΔCDA đồng dạng với ΔCEB
=>EB/DA=BC/AC
mà BC/AC=AC/CH
nên EB/DA=AC/CH=BA/HA
=>BE/AD=BA/HA
=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)
\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)
b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2
nên góc AEB=45 độ
=>ΔABE vuông cân tại A
=>AM vuông góc với BE
BM*BE=BA^2
BH*BC=BA^2
Do đó: BM*BE=BH/BC
=>BM/BC=BH/BE
=>ΔBMH đồng dạng với ΔBCE
a: \(BC=\sqrt{13^2+20^2}=\sqrt{569}\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{260\sqrt{569}}{569}\left(cm\right)\)
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
hay \(HD\cdot HC=AH^2\)