K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2019

a) xét tg EAC và tg BAF

có: EA = BA (gt); ^EAC =^BAF ( ^EAB = ^ FAC = 90 độ, ^BAC chung); AC = AF(gt)

=> tg EAC = tg BAF(c-g-c)

=> EC = BF ( 2 cạnh t/ư)

b) Kẻ \(EG\perp AH⋮G;FK\perp AH⋮K\)

xét tg EGA vuông tại G và tg AHB vuông tại H

có: EA = AB (gt); ^EAG =^ABH ( cùng phụ với ^BAH)

=> tg EGA = tg AHB( ch-gn)

=> EG = AH ( 2 cạnh t/ư) (1)

chứng minh tương tự, có: tg AFK = tg CAH(ch-gn)

                                         => FK = AH (2 cạnh t/ư) (2)

Từ(1);(2) => EG = FK (=AH)

xét tg EGI vuông tại G và tg FKI vuông tại K

có: EG = FK (cmt); ^EIG = ^FIK (đ đ)

=> tg EGI = tg FKI ( cgv -gn)

=> EI = FI (2 canh t/ư)

=> I là trung điểm của EF

...

hình bn tự kẻ nha

7 tháng 4 2019

cảm ơn bn

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

19 tháng 8 2018

bạn vào link https://alfazi.edu.vn/question/5b78c797e5cde951c7e8307d Tham gia trả lời câu hỏi để nhận được những phần quà hấp dẫn đến từ Alfazi như: xu, balo, áo, giày,... và các dụng cụ học tập khác nhé

Rồi bạn trả lời"được bạn My Love mời"cám ơn bn

19 tháng 8 2018

1 giờ trước (16:33)

Các bạn copy rồi vào link: https://alfazi.edu.vn/question/5b78c797e5cde951c7e8307d

Sau đó đăng ký rồi trả lời câu hỏi ở link đó sau đó các bạn xuống dòng và viết " Được bạn My Love mời "

Kết quả sẽ công bố vào 21h tối nay nên mk nhờ m.n giúp mk mk đang cần 40 bạn tham gia nếu bạn nào giúp mk và mk đạt được mk sẽ gửi phần quà cho các bạn 

Ai muốn tham gia hoặc có thắc mắc gì thì nhắn tin cho mk và kb để có thể biết nhiều thông tin hơn còn đây là link trang cá nhân của mk: https://alfazi.edu.vn/profile/5b77e1d19c9d707fe57235ec và các bạn muốn tham gia hãy giới thiệu với bạn bè của bạn bài đăng của mk.

Mong m.n giúp đỡ mk xin chân thành cảm ơn!

21 tháng 12 2022

a: Xét ΔABN và ΔAMC có

AB=AM

góc BAN=góc MAC

AN=AC

Do đó: ΔABN=ΔAMC

Gọi giao của ME với AB là D, NE với AC là F

góc AMD+góc MDA=90 độ

=>góc AMD+góc BDE=90 độ

=>góc DBE+góc BDE=90 độ

=>góc BED=90 độ

=>BN vuông góc với CM

b: BC^2+MN^2=BE^2+CE^2+ME^2+NE^2

=CN^2+BM^2

=>MN^2=7+5-3=9cm

=>MN=3cm