K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2019

A B C D H E I K O

Gọi Q và O lần lượt là giao điểm cuarDH và AB; HE và AC. ( Điểm Q chưa ký hiệu trên hình vì nhỏ quá nhé ).

Ta dễ dàng chứng minh được: tam giác vuông KHO = tam giác vuông KEO ( hai cạnh góc vuông )

=> \(\widehat{HKO}=\widehat{EKO}\)<=> KO là phân giác ngoài của tam giác IKH ( 1 )

Do \(AH\perp BC\)=> HC là phân giác ngoài của tam giác IKH ( 2 )

Mà KO cắt HC tại C ( 3 ). Từ ( 1 ); ( 2 ) và ( 3 ) => IC là phân giác trong của tam giác IKH <=> \(\widehat{HIC}=\widehat{CIK}=\frac{1}{2}\widehat{HIE}\)( * )

Ta dễ dàng chứng minh được : tam giác vuông DIQ = tam giác vuông HIQ ( hai cạnh góc vuông ) => \(\widehat{DIQ}=\widehat{QIH}=\frac{1}{2}\widehat{DIH}\)( # )

Do D; I ; E thẳng hàng ( theo bài ra ) nên \(\widehat{DIH}+\widehat{HIE}=180^o\)( % )

Từ ( * ); ( # ) và ( % ) => \(\widehat{QIH}+\widehat{HIC}=\frac{1}{2}\widehat{DIH}+\frac{1}{2}\widehat{HIE}\Leftrightarrow\widehat{BIC}=\frac{1}{2}\left(\widehat{DIH}+\widehat{HIE}\right)=\frac{1}{2}.180^o=90^o\)

Do hai góc AIC và BIC là hai góc nằm ở vị trí kề bù nên : \(\widehat{AIC}+\widehat{BIC}=180^o\Leftrightarrow\widehat{AIC}=180^o-\widehat{BIC}=180^o-90^o=90^o\)

Tương tự, ta chứng minh được \(\widehat{AKB}=90^o\)Vậy số đo \(\widehat{AIC},\widehat{AKB}\)đều là \(90^o.\)

22 tháng 6 2019

Cám ơn bạn Đỗ Đức Lợi nha !

25 tháng 12 2017

a) Ta có: \(AB^2+AC^2=6^2+8^2=36+64=100\)

\(BC^2=10^2=100\)

=> \(AB^2+AC^2=BC^2\)

=> Tg ABC vuông tại A(định lí Pytago đảo)

b) _D đối xứng với H qua AB(gt)=>DH vuông góc AB hay MH vuông góc AB. Mà AB vuông góc AC =>AC //MH hay AN // MH(1)

_Cm tương tự: AM //HN(2)

_(1),(2)=> Tứ giác AMHN là hình bình hành

Mà ^MAN=90° => AMHN là hcn

=> AH=MN (đpcm)

c) _Nối D với E, A với E

_Tg AHN =tg AEN(c.g.c) => AE=AH(3)

Mà AH=MN(cmt) => MN=AE(4)

(3),(4)=> AMNE là hbh => AE // MN(*); AE=MN(5)

_ Xét tg DEH ta có: M là trung điểm DH; N là trung điểm EH (tích chất đối xứng)

=> MN là đường trung bình của tg DEH

=> MN // DE(**); MN= DE/2(6)

_(*),(**)=> D, A, E thẳng hàng(7)

_(5),(6)=> AE= DE/2 kết hợp với (7)=> A là trung điểm DE 

=> D đối xứng với E qua A 

14 tháng 12 2017

Lời giải bạn Thanh đúng rồi, mình vẽ hình và trình bày lại cho rõ hơn như sau:

A B C M D E I K

a) Do D và M đối xứng qua AB nên AD = AM

         E và M đối xứng qua AC nên AE = AM

=> AD = AE (vì cùng bằng AM)

b) Theo câu a) thì AD = AE nên tam giác ADE cân => \(\widehat{ADE}=\widehat{AED}\) (1)

tam giác AID = tam giác AIM t(trường hợp CGC) vì có AI chung, AD = AM, \(\widehat{DAI}=\widehat{IAM}\)

=> \(\widehat{ADI}=\widehat{AMI}\)    (2)

Tương tự: \(\widehat{AEK}=\widehat{AMK}\)    (3)

Từ (1), (2) và (3) suy ra \(\widehat{AMI}=\widehat{AMK}\) +> AM là phân giác góc \(\widehat{IMK}\)

c) Ta có: \(\widehat{DAB}=\widehat{MAB}\) , \(\widehat{EAC}=\widehat{MAC}\) (do tính chất đối xứng)

=> \(\widehat{DAE}=2.\widehat{BAC}\) là đại lượng không đổi khi M di chuyển trên BC.

=> \(DE^2=AD^2+AE^2-2.AD.AE.\cos\widehat{DAE}\)

Mà AD = AE = AM

=> \(DE^2=AM^2+AM^2-2.AM.AM.\cos\left(2.\widehat{BAC}\right)\)

               \(=2.AM^2\left[1-\cos2\widehat{BAC}\right]\)

=> DE nhỏ nhất khi AM nhỏ nhất => M là chân đường cao hạ từ A xuống BC

14 tháng 10 2016

BAI NAY DE QUA  NHO K DUNG NHA !

cau a

vi D,M  doi xung nen tam giac ADM co AD=AM

cmtt voi tam giac AME nen co AM=AE

tu do co AD=AE

cau b

cm tam AIK=tam giac AIM do chung AD;AD=AM;DAI=MAI

nen goc AID= goc AMI

CMTT VOI tam giacAKM va AKE CO AMK=AEK

co AD = AE NEN TAM GIAC ADE CAN NE ADI=AEK

TU LAM NOT CAU C GOI Y AM LA DUONG CAO THI DE NHO NHAT