\(\Delta ABC\) nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi I là giao điểm EF v...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét ΔDAC vuông tại D và ΔDBH vuông tại D có

\(\widehat{DAC}=\widehat{DBH}\left(=90^0-\widehat{ECB}\right)\)

Do đó: ΔDAC\(\sim\)ΔDBH

Suy ra: DA/DB=DC/DH

hay \(DA\cdot DH=DB\cdot DC\)

2: Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc BAE chung

DO đó: ΔABE\(\sim\)ΔACF

Suy ra: AE/AF=AB/AC

hay AE/AB=AF/AC

Xét ΔAEF và ΔABC có

AE/AB=AF/AC

góc EAF chung

Do đó: ΔAEF\(\sim\)ΔABC

3 tháng 3 2018

kết bạn mình nghe

  
  
  
25 tháng 7 2018

A B C D E F

Xét \(\Delta ABE\)và   \(\Delta ACF\)có:

    \(\widehat{A}\)chung

   \(\widehat{AEB}=\widehat{AFC\:}=90^0\)

suy  ra:   \(\Delta ABE~\Delta ACF\)(g.g)

\(\Rightarrow\)\(\frac{AB}{AC}=\frac{AE}{AF}\)hay  \(\frac{AE}{AB}=\frac{AF}{AC}\)

Xét  \(\Delta AEF\)và   \(\Delta ABC\)có:

   \(\frac{AE}{AB}=\frac{AF}{AC}\) (cmt)

   \(\widehat{A}\) chung

suy ra:  \(\Delta AEF~\Delta ABC\) (c.g.c)

29 tháng 3 2018

a)   Xét   \(\Delta BDA\)và    \(\Delta BFC\) có:

\(\widehat{BDA}=\widehat{BFC}=90^0\)

\(\widehat{ABC}\) chung

suy ra:   \(\Delta BDA~\Delta BFC\)

\(\Rightarrow\)\(\frac{BD}{BF}=\frac{BA}{BC}\)

\(\Rightarrow\)\(BD.BC=BA.BF\)

9 tháng 5 2017

Đề kiểm tra HK2 của bạn đây ak lớp 8 ak

9 tháng 5 2017

ukm

10 tháng 11 2023

1: Xét ΔDCH vuông tại D và ΔDAB vuông tại D có

\(\widehat{DCH}=\widehat{DAB}\)

Do đó:ΔDCH đồng dạng với ΔDAB

=>\(\dfrac{DC}{DA}=\dfrac{DH}{DB}\)

=>\(DC\cdot DB=DA\cdot DH\)

2: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

\(\widehat{EAB}\) chung

Do đó: ΔAEB đồng dạng với ΔAFC

=>\(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)

=>\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

\(\widehat{FAE}\) chung

Do đó: ΔAEF đồng dạng với ΔABC