\(\Delta ABC\), gọi M, N lần lượt là trung điểm của AC, AB. Trên tia đối của tia NC l...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2019

Hình:

A B C M D E

a)Xét tam giác AMB và tam giác CMD:

Có AM=CM(gt) ;AMB=CMD(đói đỉnh);BM=DM(Gt)

=> tam giác AMB=tam giác CMD(c.G.c)

b)Vì tam giác AMB=tam giác CMD

=>BAM=DCM(hai góc tương ứng)

Mà BAM=90 Độ 

=>DCM=90 độ

=>MC vuông góc với CD

mà Ba điểm A,M,C trùng nhau

=>AC vuông góc với CD(ĐPCM)

c) mình không biết cách làm

mong bạn k đúng cho mình nha

14 tháng 12 2019

a)Xét △ AMB và △ CMD

có: MA=MC(vì m là trung điểm của BC)

∠AMB=∠CMD

BD: cạnh chung

do đó :△ AMB=△ CMD(c.g.c)

b)Vì △AMB=△CMD(cm trên)

Nên ta có: ∠BAM=∠DCM(2 góc tương ứng)

Mà ∠BAM=900

⇔∠DCM=900

Hay CD⊥AC(đpcm)

c) có lộn đề không vậy

3 tháng 1 2020

A B C N M D E

a) Xét tam giác AEN và tam giác BNC có :
\(AN=BN\left(gt\right)\)

\(\widehat{ANE}=\widehat{CNB}\) ( 2 góc đối đỉnh )
\(EN=NC\left(gt\right)\)
\(\rightarrow\Delta AEN=\Delta BNC\left(c.g.c\right)\)
\(\rightarrow AE=BC\left(1\right)\)
Xét tam giác AMD và tam giác CMB có :
\(AM=MC\left(gt\right)\)

\(\widehat{AMD}=\widehat{CMB}\)( 2 góc đối đỉnh )
\(MD=MB\left(gt\right)\)
\(\rightarrow\Delta AMD=\Delta CMB\left(c.g.c\right)\)
\(\rightarrow AD=BC\left(2\right)\)
Từ (1),(2) \(\rightarrow AE=AD\)
b) Ta có : \(\widehat{ABC}+\widehat{BAC}+\widehat{BCA}=180^O\)
\(\widehat{ABC}=\widehat{EAB}\) ( tam giác AEN = tam giác BCN )
\(\widehat{ACB}=\widehat{CAD}\)( tam giác AMD = tam giác CMB )
\(\rightarrow\)\(\widehat{CAD}+\widehat{BAC}+\widehat{EAB}=180^O\)
\(\rightarrow\) E,A,D thẳng hàng

3 tháng 1 2020

Thanks bạn nha

b: Xét tứ giác AEBC có

N là trung điểm của BA

N là trung điểm của EC

Do đó: AEBC là hình bình hành

Suy ra: AE//BC

3 tháng 12 2021

còn câu A vs B nữa 

22 tháng 10 2016

Giúp mk đi khocroi

23 tháng 1

Cho tam giác ABC. Gọi M,N lần lượt là trung điểm của AB, AC. Trên tia đối của tia MB và NC lấy tương ứng 2 điểm D và E sao cho MB=MD, NC=NE. Chứng minh rằng: a) AD=AE b)3 điểm E,A,D thẳng hàng.