Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Hai tam giác vuông ABH và ACK có:
AB = AC(gt)
Góc A chung.
nên ∆ABH = ∆ACK(Cạnh huyền- Góc nhọn)
suy ra AH = AK.
b) Hai tam giác vuông AIK và AIH có:
AK = AH(cmt)
AI cạnh chung
Nên ∆AIK = ∆AIH(cạnh huyền- cạnh góc vuông)
Suy ra ˆIAKIAK^=ˆIAHIAH^
Vậy AI là tia phân giác của góc A.
a) Hai tam giác vuông ABH và ACH có:
Tam giác ABC cân tại A ⇒ AB = AC
AH cạnh chung.
Nên ∆ABH = ∆ACH(Cạnh huyền – cạnh góc vuông)
Suy ra HB = HC
b)∆ABH = ∆ACH (Câu a)
Suy ra ∠BAH = ∠CAH (Hai góc tương ứng)
a) Chứng minh ΔBHC=ΔCKB
Xét ΔBHC vuông tại H và ΔCKB vuông tại K có
BC là cạnh chung
\(\widehat{HCB}=\widehat{KBC}\)(\(\widehat{ACB}=\widehat{ABC}\), H∈AC, K∈AB)
Do đó: ΔBHC=ΔCKB(cạnh huyền-góc nhọn)
b)
*Chứng minh IB=IC
Ta có: ΔBHC=ΔCKB(cmt)
⇒\(\widehat{HBC}=\widehat{KCB}\)(hai góc tương ứng)
hay \(\widehat{IBC}=\widehat{ICB}\)
Xét ΔIBC có \(\widehat{IBC}=\widehat{ICB}\)(cmt)
nên ΔIBC cân tại I(định lí đảo của tam giác cân)
⇒IB=IC(đpcm)
*Chứng minh \(\widehat{IBK}=\widehat{ICH}\)
Ta có: \(\widehat{ABH}+\widehat{HBC}=\widehat{ABC}\)(tia BH nằm giữa hai tia BA,BC)
\(\widehat{ACK}+\widehat{BCK}=\widehat{ACB}\)(tia CK nằm giữa hai tia CA,CB)
mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)
và \(\widehat{HBC}=\widehat{KCB}\)(cmt)
nên \(\widehat{ABH}=\widehat{ACK}\)
hay \(\widehat{IBK}=\widehat{ICH}\)(đpcm)
c) Chứng minh KH//BC
Ta có: ΔBKC=ΔBHC(cmt)
⇒KB=HC(hai cạnh tương ứng)
Ta có: AK+KB=AB(A,K,B thẳng hàng)
AH+HC=AC(do A,H,C thẳng hàng)
mà AB=AC(ΔABC cân tại A)
và KB=HC(cmt)
nên AK=AH
Xét ΔAKH có AK=AH(cmt)
nên ΔAKH cân tại A(định nghĩa tam giác cân)
⇒\(\widehat{AKH}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔAKH cân tại A)(1)
Ta có: ΔABC cân tại A(gt)
⇒\(\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔABC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{AKH}=\widehat{ABC}\)
mà \(\widehat{AKH}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị
nên KH//BC(dấu hiệu nhận biết hai đường thẳng song song)
A B C H K I a.Do △ABC cân ⇒∠ABC=∠ACB
Xét △BHC= △CKB (cạnh huyền-góc nhọn)
⇒∠IBC=∠ICB (2 góc tương ứng)
b. Do ∠IBC =∠ICB (câu a)
⇒△IBC cân ⇒ IB=IC
Xét △IBK=△ICH (cạnh huyền-góc nhọn)
⇒∠IBK=∠ICH (2 góc tương ứng)
c. Do △BHC=△CKB (câu a)
⇒ BH=CK (2 cạnh tương ứng)
⇒HC=KB ( 2 cạnh tương ứng)
Xét △BHK=△CKH(c.c.c)
⇒ ∠BHK=∠CKH (2 góc tương ứng)
Xét △IKH có: ∠2IHK=1800 -∠ KIH
Xét △IBC có : ∠2IBC=1800 -∠ ICB -∠BIC
Mà ∠BIC=∠KIH (2góc đối đỉnh)
⇒∠2IBC=1800-∠KIH
⇒∠IBC=∠IHK
Mà ∠IBC và ∠IHK là 2 góc so le trong
⇒KH // BC
Còn câu d thì hình như bị thiếu dữ kiện nên mik chưa làm
Chúc bn hok tốt
A B C I H K
a)
_ Xét \(\Delta\) AKC và \(\Delta\) AHI có :
+ góc AKC = gócÂHB = 90o
+ A là góc chung
+ AB = AC ( gt )
=> \(\Delta\)AHB = \(\Delta\) AKC ( g.c.g)
=> AH = AK ( đpcm )
b)
_ Xét \(\Delta\) AKI và \(\Delta\) AHI có
+ góc AKI = góc AHI = 900
+ AH = AK ( c/m trên )
+ AI là cạnh chung
=> \(\Delta\) AKI = \(\Delta\) AHI ( cạnh huyền - cạnh góc vuông )
=> góc KAI = gócHAI ( 2 góc tương ứng )
c)
_ Xét \(\Delta\) ABD và \(\Delta\) ACD có :
+ AB = AC ( gt )
+ AD chung
+ góc ADB = góc ACD = 90o
=> \(\Delta\)ABD = \(\Delta\) ACD ( cạnh huyền - cạnh góc vuông )
=> AI \(\perp\) BC
Còn lại k biết lm
Xét tam giác AKC và tam giác AHB có :
Góc A chung
AC = AB (tam giác ABC đều)
=> Tam giác AKC = Tam giác AHB
=> AK = AH
Ta có :
BH là đường cao của AC
CK là đường cao của AB
Mà 2 đường cắt nhau tại I
=> AI cũng là đường cao của BC
Mặt khác , tam giác ABC cân tại A
=> AI là đường cao và cũng là đường phân giác
Xét tam giác AHB và AKC có :
Góc h = k = 90 độ
ab = ac ( tam giac abc cân )
chung góc a
=> tam giác AHB = AKC ( ch - gnh )
=> ah = ak ( 2 cạnh tương ứng )
Xét tam giác aki và ahi có :
k = h ( = 90 độ )
ah = ak
ai chung
=> tam giác aki = ahi ( ch - cgv )
=> góc kai = hai
=> ai la phan giac
a.Xét tam giác AMH và tam giác NMB có
MA = MN [ gt ]
góc AMH = góc NMB [ đối đỉnh ]
HM = BM [ gt ]
Do đó ; tam giác AMH = tam giác NMB [ c.g.c ]
\(\Rightarrow\)góc AHM = góc NBM
mà bài cho góc AHM = 90độ
\(\Rightarrow\)góc NBM = 90độ
Vậy NB vuông góc với BC
b.Theo câu a ; tam giác AMH = tam giác NMB
\(\Rightarrow\)AH = NB [ cạnh tương ứng ]
Mặt khác ; Xét tam giác AHB vuông tại H có
AB lớn hơn AH
\(\Rightarrow\)AB lớn hơn NB
(Hình bn tự vẽ )
Giải
a) Do ΔABC cân tại A
=> góc B = góc C =(180o-A) :2
Mà A = 50o(gt)=>B=C=(180o-50o):2=65o
Vậy góc A = góc C = 65o
b)
Xét ΔBCK và ΔBCH có
BC là cạnh chung
góc KBC = góc HCB ( tam giác ABC cân tại A)
góc CKB = góc HCB = 90o( BH⊥AC ; CK⊥AB )
=>ΔBCK = ΔBCH ( ch_gn)
=>BK=CH ( 2 cạnh tương ứng )
MÀ AB=AC ( tam giác ABC cân tại A)
=> AB-BK=AC-HC
=>AK=AH ( đpcm )
Vậy AK=AH
c)Xét ΔAIK vàΔAIH có
AI là cạnh chung
AK=AH(theo câu b)
góc AKI= góc AHI(CK ⊥AB;BH⊥AC)
=> ΔAIK =ΔAIH (ch_cgv)
=> góc KAI= góc HAI ( 2 góc tương ứng )
MÀ AI nằm giưa AB và AC
AI là tia phân giác của góc BAC (đpcm)
Vậy Ai là tia phân giác của góc BAC
c)Xét ΔAMB và ΔAMC có
AM là cạnh chung
AB =AC ( tam giác ABC cân tại A)
góc ABC = góc ACB ( tam giác ABC Cân tại A)
BM =MC ( M là trung điểm của BC )
=> ΔAMB=ΔAMC (c_c_c)
=> góc BAM = góc CAM ( 2 góc tương ứng )
=> BM là tia phân giác của BAC
MÀ BI là tia phân giác của góc BAC ( theo câu c)
=> A;I:M thẳng hàng
VẬy ba điểm M:A:I thẳng hàng
CHúc bn hok tốt!!!! <3