Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
a, xét \(\Delta\)BEM và \(\Delta\)CFM có:
\(\widehat{B}\)=\(\widehat{C}\)(gt)
BM=CM(trung tuyến AM)
\(\Rightarrow\)\(\Delta\)BEM=\(\Delta\)CFM(CH-GN)
b,Ta có \(\Delta\)ABM=\(\Delta\)ACM(c.c.c)
\(\Rightarrow\)\(\widehat{BAM}\)=\(\widehat{CAM}\)
Gọi O là giao của AM và EF
xét tam giác OAE và tam giác OAF có:
AO cạnh chung
\(\widehat{OAE}\)=\(\widehat{OAF}\)(cmt)
vì AB=AC mà EB=FC nên AE=AF
\(\Rightarrow\)tam giác OAE=tam giác OAF(c.g.c)
\(\Rightarrow\)\(\widehat{AOE}\)=\(\widehat{AOF}\)mà 2 góc này ở vị trí kề bù nên\(\widehat{AOE}\)=\(\widehat{AOF}\)=90 độ(1)
\(\Rightarrow\)OE=OF suy ra O là trung điểm EF(2)
từ (1) và (2) suy ra AM là đg trung trực của EF
c, vì \(\widehat{BAM}\)=\(\widehat{CAM}\)=> AM là p/g của \(\widehat{BAC}\)(1)
ta có tam giác BAM=tam giác CAM(c.g.c)
=> AD là p/g của góc BAC(2)
từ (1) và(2) suy ra AM và AD trùng nhau nên A,M,D thẳng hàng
a, Ta có : Tam giác ABC cân tại A => Góc B=Góc C
Xét tam giác BEM vuông tại E và tam giác CFM vuông tại F
BM=CM (BM là trung tuyến)
Góc B=Góc C
=> Tam giác BEM=Tam giác CFM(ch-gn)
b,Từ a, \(\Delta\)BEM=\(\Delta CFM\)=> ME=MF (1);BE=FC
Mà AB=AC=> AE=AF(2)
Từ 1 và 2 => AM là trung trực của EF
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
Do đó: ΔABD=ΔACE
b: SỬa đề: ΔHDE cân tại H
Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
Ta có: ΔEBC vuông tại E
mà EH là đường trung tuyến
nên EH=BC/2(1)
Ta có: ΔDBC vuông tại D
mà DH là đường trung tuyến
nên DH=BC/2(2)
Từ (1) và (2) suy ra HD=HE
hay ΔHDE cân tại H
c: Xét ΔBDC có
H là trung điểm của BC
HM//BD
Do đó: M là trung điểm của CD
a và b. Xét tam giác ABD và ACE
 (chung)
AB = AC
Suy ra tam giác ABD = tam giác ACE ---> AE = AD
Vậy tam giác AED là tam giác cân.
c)Xin lỗi nha mình không giải được
d) Ta có CD vuông góc với BK. vậy CD là đường cao của tam giác CBK mà BD = DK do đó đường cao trùng với đường trung trực. Suy ra tam giác cân ---> DKC = DBC
Mà góc ACE = ABD. Vậy suy ra góc ECB = DBC mà DBC = DKC --> ECB = DKC.
a) xét tam giác EBC và tam giác DBC có:
góc E = góc D = 900 (gt)
BC chung
=> tam giác EBC = tam giác DBC (ch-gn)
=> BD = CE (cạnh tương ứng)
b) vì tam giác EBC = tam giác DBC (câu a)
=> góc HBC = góc HCB (góc tương ứng)
=> tam giác HBC cân tại H
chắc sai rùi
a) Xét hai tam giác vuông ABD và ACE có:
AB = AC (do ΔABCcân tại A)
A^: góc chung
Vậy ΔABD=ΔACE(ch−gn)
b) ΔABC cân tại A
⇒⇒ AH là đường cao đồng thời là đường trung tuyến của BC
hay HB = HC
ΔBDC có DH là đường trung tuyến ứng với cạnh huyền BC
⇒ DH = HB = HC = \(\dfrac{BC}{2}\)
⇒ΔHDC cân tại H.
c) ΔHDC cân tại H có HM là đường cao đồng thời là đường trung tuyến
Vậy DM = MC (đpcm).
d)△HND vuông tại M có:MI là trung tuyến=>MI=HI=\(\dfrac{HD}{2}\)
=>△IHM cân tại I=>góc IHM=IMH
ta lại có HM là phân giác của góc DHC=>góc IHM=góc MHC
mà hai góc IHM và MHC ở vị trí so le trong=>MI//HC mà HC_|_AH
=>MI_|_AH hay AH_|_MI
Hình bạn tự vẽ nhé.Chúc bạn học tốt!
HND là tam giác nào vậy