Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\sqrt{4-5x}=12\Leftrightarrow4-5x=144\Leftrightarrow5x=140\Leftrightarrow x=28\)
b,ĐK : \(x\ge7\)
\(\sqrt{x^2-14x+49}-3x=1\Leftrightarrow\sqrt{\left(x-7\right)^2}=3x+1\)
\(\Leftrightarrow x-7=3x+1\Leftrightarrow-2x-8=0\Leftrightarrow x=-4\)( vô lí )
c, Bn làm nốt nhé
a) đk: \(x\le\frac{4}{5}\)
Ta có: \(\sqrt{4-5x}=12\)
\(\Leftrightarrow\left|4-5x\right|=144\)
\(\Rightarrow4-5x=144\)
\(\Leftrightarrow5x=-140\)
\(\Rightarrow x=-28\left(tm\right)\)
b) Ta có: \(\sqrt{x^2-14x+49}-3x=1\)
\(\Leftrightarrow\sqrt{\left(x-7\right)^2}=1+3x\)
\(\Leftrightarrow\left|x-7\right|=3x+1\)
\(\Leftrightarrow\orbr{\begin{cases}x-7=3x+1\\x-7=-3x-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-8\\4x=6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-4\\x=\frac{3}{2}\end{cases}}\)
Bài 2 :
ĐKXĐ : \(\left\{{}\begin{matrix}x\le3\\x\le5\end{matrix}\right.\)
=> \(x\le3\)
Ta có : \(\sqrt{3-x}+\sqrt{5-x}=2\)
=> \(\sqrt{3-x}=2-\sqrt{5-x}\)
=> \(3-x=4-4\sqrt{5-x}+5-x\)
=> \(-4\sqrt{5-x}=-6\)
=> \(\sqrt{5-x}=\frac{3}{2}\)
=> \(x=2,75\) ( TM )
Ta có : \(A=\sqrt{3-2,75}-\sqrt{5-2,75}=-1\)
Vậy ...
Câu 1:
\(\Rightarrow\left\{{}\begin{matrix}\left(\sqrt{x}+\sqrt{y}\right)^2=4^2\\\sqrt{xy}=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+y=10\\xy=9\end{matrix}\right.\\ \)
\(M=x^2+y^2=\left(x+y\right)^2-2xy...\)
Bài 1 :
a) \(P=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}}{x-2\sqrt{x}+1}\)
\(P=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{1}{\sqrt{x}-1}\right).\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)
\(P=\frac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}-1}{\sqrt{x}}\)
\(P=\frac{\sqrt{x}+1}{x}\)
b) \(P>\frac{1}{2}\)
\(\Leftrightarrow\frac{\sqrt{x}+1}{x}>\frac{1}{2}\)
\(\Leftrightarrow\frac{\sqrt{x}+1}{x}-\frac{1}{2}>0\)
\(\Leftrightarrow\frac{\sqrt{x}+1-2x}{x}>0\)
\(\Leftrightarrow\sqrt{x}-2x+1>0\left(x>0\right)\)
\(\Leftrightarrow\sqrt{x}+x^2-2x+1-x^2>0\)
\(\Leftrightarrow\sqrt{x}+x^2+\left(x-1\right)^2>0\left(\forall x>0\right)\)
Vậy P > 1/2 với mọi x> 0 ; x khác 1
Bài 2 :
a) \(K=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}+a}+\frac{2}{a-1}\right)\)
\(K=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{1}{\sqrt{a}\left(\sqrt{a}+1\right)}+\frac{2}{a-1}\right)\)
\(K=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{a-1+2\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}\left(a-1\right)\left(\sqrt{a}+1\right)}\)
\(K=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\sqrt{a}\left(a-1\right)\left(\sqrt{a}-1\right)}{a-1+2a+2\sqrt{a}}\)
\(K=\frac{\left(a-1\right)^2}{3a+2\sqrt{a}-1}\)
b) \(a=3+2\sqrt{2}=2+2\sqrt{2}+1=\left(\sqrt{2}+1\right)^2\)( thỏa mãn ĐKXĐ )
Thay a vào biểu thức K , ta có :
\(K=\frac{\left(3+2\sqrt{2}-1\right)^2}{3\left(3+2\sqrt{2}\right)+2\sqrt{\left(\sqrt{2}+1\right)^2}-1}\)
\(K=\frac{\left(2+2\sqrt{2}\right)^2}{9+6\sqrt{2}+2\left|\sqrt{2}+1\right|-1}\)
\(K=\frac{\left(2+2\sqrt{2}\right)^2}{8+6\sqrt{2}+2\sqrt{2}+2}\)
\(K=\frac{\left(2+2\sqrt{2}\right)^2}{10+8\sqrt{2}}\)
ĐKXĐ: x>=1
\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)
\(\Leftrightarrow\left|\sqrt{x-1}+1\right|+\left|\sqrt{x-1}-1\right|=2\)
\(\Leftrightarrow\left|\sqrt{x-1}+1\right|+\left|1-\sqrt{x-1}\right|=2\)
Ta có \(\left|\sqrt{x-1}+1\right|+\left|1-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}+1+1-\sqrt{x-1}\right|=2\)
Dấu "=" xảy ra khi \(\left(\sqrt{x-1}+1\right)\left(1-\sqrt{x-1}\right)\ge0\)
<=> x=<2. Kết hợp với ĐKXĐ => 1=<x=<2
\(7\sqrt{2x}-2\sqrt{2x}-4=3\sqrt{2x}\)
\(7\sqrt{2x}-2\sqrt{2x}-3\sqrt{2x}=4\)
\(2\sqrt{2x}=4\)
\(\sqrt{2x}=\frac{4}{2}=2=\sqrt{4}\)
\(\rightarrow2x=4\rightarrow x=2\)
\(\sqrt{x^2-6x+9}=\sqrt{4+2\sqrt{3}}\)
\(\sqrt{\left(x-3\right)^2}=\sqrt{1+2.1\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(\sqrt{\left(x-3\right)^2}=\sqrt{\left(1+\sqrt{3}\right)^2}\)
\(\left|x-3\right|=1+\sqrt{3}\)
Chia 2 TH
Với x lớn hơn hoặc bằng 3 => \(x=4+\sqrt{3}\)
Với x bé hơn 3 => \(x=2+\sqrt{3}\)
Nếu không có thêm điều kiện gì về x thì $C$ không có giá trị max bạn nhé.
đề bài chỉ cho x > 0 thôi ạ