Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
a < b và 2 > 0 => 2a < 2b
a < b cộng hai vế với a
=> a + a < a + b => 2a < a + b
a < b và -1 < 0 => -a > -b
a) Từ a + 5 < b + 5
=> a + 5 + (-5) < b + 5 + (-5) (cộng hai vế với -5)
=> a < b
a)từ a+5<b+5 ta cộng -5 vào 2 vế được a<b
b)từ -3a>-3b ta nhân 2 vế với -1/3 (tức là chia cả 2 vế cho -3) và -3a . -1/3< -3b . -1/3 sẽ được a<b
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(B=\frac{1}{(a+2b)(a+2c)}+\frac{1}{(b+2a)(b+2c)}+\frac{1}{(c+2a)(c+2b)}\)
\(\geq \frac{9}{(a+2b)(a+2c)+(b+2a)(b+2c)+(c+2a)(c+2b)}\)
\(\Leftrightarrow B\geq \frac{9}{(a^2+2ac+2ab+4bc)+(b^2+2bc+2ab+4ac)+(c^2+2bc+2ac+4ab)}\)
\(\Leftrightarrow B\geq \frac{9}{a^2+b^2+c^2+8(ab+bc+ac)}=\frac{9}{(a+b+c)^2+6(ab+bc+ac)}(*)\)
Theo hệ quả quen thuộc của BĐT Cô-si:
\(a^2+b^2+c^2\geq ab+bc+ac\)
\(\Rightarrow (a+b+c)^2\geq 3(ab+bc+ac)\)
\(\Rightarrow 2(a+b+c)^2\geq 6(ab+bc+ac)(**)\)
Từ \((*); (**)\Rightarrow B\geq \frac{9}{(a+b+c)^2+2(a+b+c)^2}=\frac{3}{(a+b+c)^2}\geq \frac{3}{3^2}=\frac{1}{3}\)
(do \(a+b+c\leq 3)\)
Do đó: \(B_{\min}=\frac{1}{3}\)
Dấu bằng xảy ra khi \(a=b=c=1\)
1.Vì a < b nên a-b sẽ bằng một số nguyên âm.
Vậy a-b < 0.
2.Vì a < b nên 2a < 2b.
2a=a.a:nếu a+b=số nguyên dương thì 2a > a+b mà nếu a+b=số nguyên âm thì 2a > a+b.
2b=b.b:nếu a+b=số nguyên dương thì 2b > a+b mà nếu a+b=số nguyên âm thì 2b > a+b.
a < b
⇒ 2a < 2b (nhân hai vế với 2 > 0, BĐT không đổi chiều)
⇒ 2a + 1 < 2b + 1 (cộng hai vế với 1).
Vậy 2a + 1 < 2b + 1.
Tặng acc Online Math hơn 100 điểm hỏi đáp cho 50 thành viên đầu tiên !
Link nè : http://123link.vip/MlazJtj
Nhanh tay không hết ! Ưu đãi có hạn !
Buổi tối vui vẻ !
Chúc các bạn nhận acc thành công !
dễ mà ai chẳng làm đc anh