K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2017

- Tính A trước:

\(A=\frac{\left(2015+1\right).2017-2}{2015+2015.2017}\)

\(A=\frac{2017.2015+2017-2}{2017.2015+2015}\)

\(A=\frac{2017.2015+2015}{2017.2015+2015}\)

\(A=1\)

- Tính B:

\(B=\frac{-2016.20172017}{2017.20162016}\)

\(B=\frac{-2016}{2017}.\frac{20172017}{20162016}\)

\(B=\frac{-10001}{10001}\)

\(B=-1\)

Vậy ta có: \(A+B=1-1=0\)

13 tháng 5 2017

A = 1

B = -1

=> A + B = 0

13 tháng 5 2017

bai cuoi de hk2 toan lop 6 cua truong minh do

27 tháng 2 2019

xet bt A ta co

A=2016.2017+1/2016.2017

=1+1/2016.2017

xet bt B ta co

B=2017.2018+1/2017.2018

=1+1/2017.2018

vì 1/2016.2017>1/2017.2018

nen 1+1/2016.2017>1+1/2017.2018

suy ra A>B

ai thay mik lam đúng thì k cho mik nha

27 tháng 2 2019

b lớn hơn

27 tháng 7 2016

a.\(\frac{2015.2016-1}{2015.2016}=1-\frac{1}{2015.2016}\)

\(\frac{2016.2017-1}{2016.2017}=1-\frac{1}{2016.2017}\)

vì \(\frac{1}{2015.2016}>\frac{1}{2016.2017}\)

=>\(-\frac{1}{2015.2016}< -\frac{1}{2016.2017}\)

=>\(1-\frac{1}{2015.2016}< 1-\frac{1}{2016.2017}\)

7 tháng 5 2018

Bài 1 : 

Ta có :

\(A=\frac{10^{17}+1}{10^{18}+1}=\frac{\left(10^{17}+1\right).10}{\left(10^{18}+1\right).10}=\frac{10^{18}+10}{10^{19}+10}\)

Mà : \(\frac{10^{18}+10}{10^{19}+10}>\frac{10^{18}+1}{10^{19}+1}\)

Mà \(A=\frac{10^{18}+10}{10^{19}+10}\)nên \(A>B\)

Vậy \(A>B\)

Bài 2 :

Ta có :

\(S=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2013}\)

\(\Rightarrow S=\frac{2014-1}{2014}+\frac{2015-1}{2015}+\frac{2016-1}{2016}+\frac{2013+3}{2013}\)

\(\Rightarrow S=1-\frac{1}{2014}+1-\frac{1}{2015}+1-\frac{1}{2016}+1+\frac{3}{2013}\)

\(\Rightarrow S=4+\frac{3}{2013}-\left(\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)\)

Vì \(\frac{1}{2013}>\frac{1}{2014}>\frac{1}{2015}>\frac{1}{2016}\)nên  \(\frac{3}{2013}-\left(\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)>0\)

Nên : \(M>4\)

Vậy \(M>4\)

Bài 3 : 

Ta có :

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.......+\frac{1}{100^2}\)

Suy ra : \(A< \frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+....+\frac{1}{99.101}\)

\(\Rightarrow A< \frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{2.4}+......+\frac{2}{99.101}\right)\)

\(\Rightarrow A< \frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-......-\frac{1}{101}\right)\)

\(\Rightarrow A< \frac{1}{2}.\left[\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{99}\right)-\left(\frac{1}{3}+\frac{1}{4}+......+\frac{1}{101}\right)\right]\)

\(\Rightarrow A< \frac{1}{2}.\left(1+\frac{1}{2}-\frac{1}{100}-\frac{1}{101}\right)\)

\(\Rightarrow A< \frac{1}{2}.\left(1+\frac{1}{2}\right)\)

\(\Rightarrow A< \frac{3}{4}\)

Vậy \(A< \frac{3}{4}\)

Bài 4 :

\(a)A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{2015.2017}\)

\(\Rightarrow A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{1}{2015.2017}\right)\)

\(\Rightarrow A=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{2015}-\frac{1}{2017}\right)\)

\(\Rightarrow A=\frac{1}{2}.\left(1-\frac{1}{2017}\right)\)

\(\Rightarrow A=\frac{1}{2}.\frac{2016}{2017}\)

\(\Rightarrow A=\frac{1008}{2017}\)

Vậy \(A=\frac{1008}{2017}\)

\(b)\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+......+\frac{1}{x\left(x+2\right)}=\frac{1008}{2017}\)

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{x.\left(x+2\right)}=\frac{2016}{2017}\)

\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{x}-\frac{1}{x+2}=\frac{2016}{2017}\)

\(1-\frac{1}{x+2}=\frac{2016}{2017}\)

\(\Rightarrow\frac{1}{x+2}=1-\frac{2016}{2017}\)

\(\Rightarrow\frac{1}{x+2}=\frac{1}{2017}\)

\(\Rightarrow x+2=2017\)

\(\Rightarrow x=2017-2=2015\)

Vậy \(x=2015\)

\(B=\left(\dfrac{1}{2015}+1\right)+\left(\dfrac{2}{2014}+1\right)+...+\left(\dfrac{2014}{2}+1\right)+1\)

\(=\dfrac{2016}{2015}+\dfrac{2016}{2014}+...+\dfrac{2016}{2}+\dfrac{2016}{2016}\)

\(=2016\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}+\dfrac{1}{2015}+\dfrac{1}{2016}\right)=2016\cdot A\)

=>A/B=1/2016

10 tháng 8 2016

Bài 1:

a)\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2016}-\frac{1}{2017}\)

\(=1-\frac{1}{2017}\)

\(=\frac{2016}{2017}\)

b)\(=1008\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2017}\right)\)

\(=1008\cdot\left(1-\frac{1}{2017}\right)\)

\(=1008\cdot\frac{2016}{2017}\)
\(=\frac{290304}{31}\)
 
 
 
 
10 tháng 8 2016

Bài 2:

a)\(A=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{19.21}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}\)

\(=\frac{1}{3}-\frac{1}{21}\)

\(=\frac{2}{7}\)

b)\(B=\frac{5}{28}+\frac{5}{70}+...+\frac{5}{700}\)

\(=\frac{5}{4.7}+\frac{5}{7.10}+...+\frac{5}{25.28}\)

\(=\frac{5}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{25}-\frac{1}{28}\right)\)

\(=\frac{5}{3}\left(\frac{1}{4}-\frac{1}{28}\right)\)

\(=\frac{5}{3}\cdot\frac{6}{28}\)

\(=\frac{15}{14}\)

Bài 3:

a)Đặt \(A=-\frac{20}{11.13}-\frac{20}{13.15}-...-\frac{20}{53.55}\)

\(=-\left(\frac{20}{11.13}+\frac{20}{13.15}+...+\frac{20}{53.55}\right)\)

\(=-\left[10\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{53}-\frac{1}{55}\right)\right]\)

\(=-\left[10\left(\frac{1}{11}-\frac{1}{55}\right)\right]\)

\(=-\left[10\cdot\frac{4}{55}\right]\)

\(=-\frac{8}{11}\).Thay vào ta có: \(x-\frac{8}{11}=\frac{2}{9}\)

\(\Leftrightarrow x=\frac{94}{99}\)

b)\(\frac{2}{42}+\frac{2}{56}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)

\(2\left(\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2}{9}\)

\(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{9}\)

\(\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)

\(\frac{1}{x+1}=\frac{1}{18}\)

\(x+1=18\)

\(x=17\)

 

24 tháng 3 2017

A. Đặt A= biểu thức đã cho

=>\(\frac{A}{3}=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)

=>\(\frac{A}{3}.2=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\)

=>\(\frac{2A}{3}-\frac{A}{3}=2-\frac{1}{2^9}\)

=>\(A=\frac{3\left(2^{10}-1\right)}{2^9}\)

B. Đặt B=biểu thức đã cho

\(\Rightarrow\frac{B}{2}=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{2015.2017}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2015}-\frac{1}{2017}\)

\(=\frac{1}{3}-\frac{1}{2017}=\frac{2014}{6051}\)

\(\Rightarrow B=\frac{4028}{6051}\)

16 tháng 4 2017

mình đã thi học kì bài này và mình được 10, nhưng đã 1 năm trôi qua nên mình quên mất tiêu rùi.

rất tiếc, chúc bạn may mắn