\(A=\frac{1}{1.300}+\frac{1}{2.301}+...+\frac{1}{101.400}\)     

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2021

cghsbbvb hs bsc x bvbddddddd c n  snsnfERGQHZ NAC nnnnNNNNNNNNNNNNNNNNNNNNNNNN nsn  v 

30 tháng 9 2021

tgrtyfdytiloniyu7d tadftr DxZhfhygd ỳdstAACA 

đặt \(A=\frac{1}{1.300}+\frac{1}{2.301}+...+\frac{1}{101.400}\)

\(\Rightarrow299A=\frac{299}{1.300}+\frac{299}{2.301}+...+\frac{299}{101.400}=1-\frac{1}{300}+\frac{1}{2}-\frac{1}{301}+...+\frac{1}{101}-\frac{1}{400}\)

\(=\left(1+\frac{1}{2}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+...+\frac{1}{400}\right)=C\)

\(\Rightarrow A=\frac{C}{299}\)

đặt \(B=\frac{1}{1.102}+\frac{1}{2.103}+\frac{1}{3.104}+...+\frac{1}{299.400}\)

\(\Rightarrow101B=\frac{101}{1.102}+\frac{101}{2.103}+...+\frac{1}{299.400}=1-\frac{1}{102}+\frac{1}{2}-\frac{1}{103}+...+\frac{1}{299}-\frac{1}{400}\)

\(=\left(1+\frac{1}{2}+...+\frac{1}{299}\right)-\left(\frac{1}{102}+\frac{1}{103}+...+\frac{1}{400}\right)=\left(1+\frac{1}{2}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+...+\frac{1}{400}\right)=C\)

\(\Rightarrow B=\frac{C}{101}\)

bài toán được viết lại như sau:

\(\frac{C}{\frac{299}{\frac{C}{101}}}\)=\(\frac{101}{299}\)

4 tháng 7 2016

Sai rồi

11 tháng 5 2016

\(A=\frac{1}{299}.\left(1-\frac{1}{300}+\frac{1}{2}-\frac{1}{301}+...........+\frac{1}{101}-\frac{1}{400}\right)\)

\(=\frac{1}{299}.\left(1+\frac{1}{2}+........+\frac{1}{101}-\frac{1}{300}-\frac{1}{301}-....-\frac{1}{400}\right)\)

\(B=\frac{1}{101}.\left(1-\frac{1}{102}+\frac{1}{2}-\frac{1}{103}+........+\frac{1}{299}-\frac{1}{400}\right)\)

\(=\frac{1}{101}.\left(1+\frac{1}{2}+.......+\frac{1}{299}-\frac{1}{102}-\frac{1}{103}-............-\frac{1}{400}\right)\)

\(=\frac{1}{101}\left(1+\frac{1}{2}+......+\frac{1}{102}+\frac{1}{103}+.....+\frac{1}{299}-\frac{1}{102}-.....-\frac{1}{300}-....-\frac{1}{400}\right)\)

\(=\frac{1}{101}\left(1+\frac{1}{2}+........+\frac{1}{101}-\frac{1}{300}-\frac{1}{301}-...-\frac{1}{400}\right)\)

\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{299}}{\frac{1}{101}}=\frac{101}{299}\)

11 tháng 5 2016

299A=(1+1/2+1/3+...+1/101)-(1/300+1/301+...+1/400)=C

101B=(1+1/2+1/3+...+1/299)-(1/102+1/103+..+1/400)=D=C

=>A/B=C/299.101/C=101/299

11 tháng 4 2017

Ta có :

\(A=\dfrac{1}{1.300}+\dfrac{1}{2.301}+\dfrac{1}{3.302}+..................+\dfrac{1}{101.400}\)

\(299A=\dfrac{299}{1.300}+\dfrac{299}{2.301}+\dfrac{299}{3.302}+..................+\dfrac{299}{101.400}\)

\(299A=1-\dfrac{1}{300}+\dfrac{1}{2}-\dfrac{1}{301}+.................+\dfrac{1}{101}-\dfrac{1}{400}\)

\(299A=\left(1+\dfrac{1}{2}+.................+\dfrac{1}{101}\right)-\left(\dfrac{1}{300}+\dfrac{1}{301}+.............+\dfrac{1}{400}\right)=C\)

\(\Rightarrow A=\dfrac{C}{299}\)

Lại có :

\(B=\dfrac{1}{1.102}+\dfrac{1}{2.103}+................+\dfrac{1}{299.400}\)

\(101B=\dfrac{101}{1.102}+\dfrac{101}{2.103}+...............+\dfrac{101}{299.400}\)

\(101B=1-\dfrac{1}{102}+\dfrac{1}{2}-\dfrac{1}{103}+...............+\dfrac{1}{299}-\dfrac{1}{400}\)

\(101B=\left(1+\dfrac{1}{2}+...............+\dfrac{1}{299}\right)-\left(\dfrac{1}{102}+\dfrac{1}{103}+...............+\dfrac{1}{400}\right)=C\)\(\Rightarrow B=\dfrac{C}{101}\)

\(\Rightarrow\dfrac{A}{B}=\dfrac{C}{101}:\dfrac{C}{299}=\dfrac{299}{101}\)

~ Chúc bn học tốt ~

13 tháng 6 2016

A=1

B=154526

28 tháng 1 2018

Có cách giải nào ngắn hơn k vậy???