K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2017

A = 1

B = -1

=> A + B = 0

13 tháng 5 2017

bai cuoi de hk2 toan lop 6 cua truong minh do

13 tháng 5 2017

- Tính A trước:

\(A=\frac{\left(2015+1\right).2017-2}{2015+2015.2017}\)

\(A=\frac{2017.2015+2017-2}{2017.2015+2015}\)

\(A=\frac{2017.2015+2015}{2017.2015+2015}\)

\(A=1\)

- Tính B:

\(B=\frac{-2016.20172017}{2017.20162016}\)

\(B=\frac{-2016}{2017}.\frac{20172017}{20162016}\)

\(B=\frac{-10001}{10001}\)

\(B=-1\)

Vậy ta có: \(A+B=1-1=0\)

28 tháng 5 2017

a)

\(A=2\left(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{2015\cdot2017}\right)\)

\(=\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{2015\cdot2017}\)

\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2015}-\dfrac{1}{2017}\)

\(=1-\dfrac{1}{2017}\)

\(=\dfrac{2017}{2017}-\dfrac{1}{2017}\)

\(=\dfrac{2016}{2017}\)

\(B=\dfrac{2013\cdot2015\cdot2017}{2018\cdot2013\cdot\left(2014+1\right)}\)

\(=\dfrac{2013\cdot2015\cdot2017}{2018\cdot2013\cdot2015}\)

\(=\dfrac{2017}{2018}\)

b)

Ta có:

\(A=\dfrac{2016}{2017}=1-\dfrac{1}{2017}\)

\(B=\dfrac{2017}{2018}=1-\dfrac{1}{2018}\)

\(\dfrac{1}{2017}>\dfrac{1}{2018}\)

\(\Rightarrow1-\dfrac{1}{2017}< 1-\dfrac{1}{2018}\)

\(\Rightarrow A< B\)

Vậy \(A< B\).

Anh làm nhé!!

Bài làm:

a) Tính A và B

\(A=2\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{2015.2017}\right)\\ =\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{2015.2017}\\ =1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2015}-\dfrac{1}{2017}\\ =1-\dfrac{1}{2017}=\dfrac{2016}{2017}\)

\(B=\dfrac{2013.2015.2017}{2018.2013.\left(2014+1\right)}\\ =\dfrac{2013.2015.2017}{2018.2013.2015}=\dfrac{2017}{2018}\)

b) So sánh A và B.

Ta có: \(A=\dfrac{2016}{2017}=1-\dfrac{1}{2017}\\ B=\dfrac{2017}{2018}=1-\dfrac{1}{2018}\\ Mà:\dfrac{1}{2017}>\dfrac{1}{2018}\\ =>1-\dfrac{1}{2017}< 1-\dfrac{1}{2018}\\ =>A< B\)

14 tháng 4 2017

Ta có :

B = \(\dfrac{2015}{1}+\dfrac{2014}{2}+\dfrac{2013}{3}+...+\dfrac{2}{2014}+\dfrac{1}{2015}\) => B = \(\left(1+\dfrac{2014}{2}\right)+\left(1+\dfrac{2013}{3}\right)+...+\left(1+\dfrac{2}{2014}\right)+\left(1+\dfrac{1}{2015}\right)+1\) => B = \(\dfrac{2016}{2}+\dfrac{2016}{3}+...+\dfrac{2016}{2014}+\dfrac{2016}{2015}+\dfrac{2016}{2016}\) => B = \(2016\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right)\) Ta có :

\(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}}{2016\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}\right)}\)

=> \(\dfrac{A}{B}=\dfrac{1}{2016}\)

Vậy \(\dfrac{A}{B}=\dfrac{1}{2016}\)

14 tháng 4 2017

cảm ơn bạn nhiều nhéhehe

20 tháng 4 2018

A=\(\dfrac{2016.2017+1}{2016.2017}=\dfrac{2016.2017}{2016.2017}+\dfrac{1}{2016.2017}=1+\dfrac{1}{2016.2017}\)

A=\(\dfrac{2017.2018+1}{2017.2018}=\dfrac{2017.2018}{2017.2018}+\dfrac{1}{2017.2018}=1+\dfrac{1}{2017.2018}\)

Mà 1=1; \(\dfrac{1}{2016.2017}\)>\(\dfrac{1}{2017.2018}\) nên A>B

9 tháng 5 2017

\(B=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2016}-\dfrac{1}{2017}\)

\(B=1-\dfrac{1}{2017}\)

\(B=\dfrac{2017}{2017}-\dfrac{1}{2017}\)

\(B=\dfrac{2016}{2017}\)

9 tháng 5 2017

câu này truong minh lm hoai a

hihahiha

9 tháng 7 2017

Đặt \(S=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}-\dfrac{1}{2016}\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2016}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{1008}\right)\)

\(=\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\)

Nên:

\(A=\left(\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right):\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}-\dfrac{1}{2016}\right)\)\(=\left(\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right):\left(\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right)\)\(\Rightarrow A=1\)

Vậy A = 1

Chúc bạn học tốt!!

10 tháng 7 2017

siêu ghê :))

26 tháng 4 2018

please help me