K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2017

a ) Rút gọn : \(A=\dfrac{1}{x+5}+\dfrac{2}{x-5}-\dfrac{2x+10}{\left(x+5\right)\left(x-5\right)}\)

\(\Leftrightarrow A=\dfrac{1}{x+5}+\dfrac{2}{x-5}-\dfrac{2\left(x+5\right)}{\left(x+5\right)\left(x-5\right)}\)

\(\Leftrightarrow A=\dfrac{1}{x+5}+\dfrac{2}{x-5}-\dfrac{2}{x-5}\)

\(\Leftrightarrow A=\dfrac{1}{x+5}.\)

Khi \(A=-3\),thì :

\(\dfrac{1}{x+5}=-3\Leftrightarrow x=-\dfrac{16}{3}\)

Ta có : \(9x^2-42x+49\)

\(=\left(3x\right)^2-2.3x.7+49\)

\(=\left(3x-7\right)^2\)

Thay \(x=-\dfrac{16}{3},\) ta có :

\(\left(3.\dfrac{-16}{3}-7\right)^2=\left(-16-7\right)^2=\left(-23\right)^2=529\)

9 tháng 3 2020

các bạn đi học chưa hả?

9 tháng 3 2020

Chưa bạn

27 tháng 5 2017

\(\dfrac{1}{x+5}+\dfrac{1}{x-5}-\dfrac{2x+10}{\left(x+5\right)\cdot\left(x-5\right)}=\dfrac{x-5+x+5-2\left(x+5\right)}{\left(x+5\right)\left(x-5\right)}\)

=\(\dfrac{2x-2}{x+5}=\dfrac{2\left(x-1\right)}{x+5}\)

b, Khi A=-3

thì ta có

\(\dfrac{2\left(x-1\right)}{x+5}=-3\)

\(\Leftrightarrow\) \(\dfrac{2\left(x-1\right)}{x+5}=\dfrac{-3\left(x+5\right)}{x+5}\Leftrightarrow2x-2=-3x-15\Leftrightarrow2x+3x=-15+2\Leftrightarrow5x=-13\Rightarrow x=-\dfrac{13}{5}\)

5 tháng 8 2017

\(A=\frac{1}{x+5}+\frac{2}{x-5}-\frac{2x+10}{\left(x+5\right)\left(x-5\right)}\)   ĐK đề bài

\(=\frac{x-5+2\left(x+5\right)-2x-10}{\left(x+5\right)\left(x-5\right)}=\frac{-\left(x+5\right)}{\left(x+5\right)\left(x-5\right)}=-\frac{1}{x-5}\)

b/ có A=-3 => \(-\frac{1}{x-5}=-3 \Rightarrow x-5=\frac{1}{3}\Rightarrow x=\frac{16}{3}\)

có \(9x^2-42x+49=\left(3x-7\right)^2=\left(\frac{3.16}{3}-7\right)^2=81\)

26 tháng 5 2017

a.x=5

b.mk chưa hiểu ý đề bài,hjhj

29 tháng 3 2020

Bài 2 :

a, Ta có : \(A=\frac{1}{x+5}+\frac{2}{x-5}-\frac{2x+10}{\left(x+5\right)\left(x-5\right)}\)

=> \(A=\frac{x-5}{\left(x+5\right)\left(x-5\right)}+\frac{2\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}-\frac{2x+10}{\left(x+5\right)\left(x-5\right)}\)

=> \(A=\frac{x-5+2\left(x+5\right)-2x-10}{\left(x-5\right)\left(x+5\right)}\)

=> \(A=\frac{x-5}{\left(x-5\right)\left(x+5\right)}=\frac{1}{x+5}\)

b, - Thay A = -3 ta được phương trình \(\frac{1}{x+5}=-3\)

=> \(-3\left(x+5\right)=1\)

=> \(-3x-15=1\)

=> \(-3x=16\)

=> \(x=-\frac{16}{3}\)

- Thay x = \(-\frac{16}{3}\)vào phương trình trên ta được :

\(9.\left(-\frac{16}{3}\right)^2-42.\left(-\frac{16}{3}\right)+49=529\)

29 tháng 11 2018

\(a,\frac{\left(2x^2+2x\right)\left(x-2\right)^2}{\left(x^3-4x\right)\left(x+1\right)}\)

\(=\frac{2x\left(x+1\right)\left(x-2\right)^2}{x\left(x-2\right)\left(x+2\right)\left(x+1\right)}\)

\(=\frac{2\left(x-2\right)}{x+2}\)

Với \(x=\frac{1}{2}\)

\(\Rightarrow\frac{2\left(x-2\right)}{x+2}=\frac{2\left(\frac{1}{2}-2\right)}{\frac{1}{2}+2}=\frac{2.-\frac{3}{2}}{\frac{5}{2}}=-3.\frac{2}{5}=\frac{-6}{5}\)

b,Do x = -5; y = 10=> y = -2x

Thay y = -2x vào biểu thức ta được

\(\frac{x^3-x^2\left(-2x\right)+x\left(-2x\right)^2}{x^3+\left(-2x\right)^3}\)

\(=\frac{x^3+2x^3+2x^2}{x^3-8x^3}\)

\(=\frac{3x^3+2x^2}{-7x^3}=\frac{3}{-7}+\frac{2}{-7x}\)

Thay x = -5 là đc

12 tháng 11 2021

a: \(P=\dfrac{x\left(x+2\right)}{2\left(x+5\right)}+\dfrac{x-5}{x}-\dfrac{5x-50}{2x\left(x+5\right)}\)

\(=\dfrac{x^3+2x^2+2x^2-50-5x+50}{2x\left(x+5\right)}\)

\(=\dfrac{x^3+4x^2-5x}{2x\left(x+5\right)}\)

\(=\dfrac{x\left(x+5\right)\left(x-1\right)}{2x\left(x+5\right)}=\dfrac{x-1}{2}\)

14 tháng 12 2018

a,ĐK:  \(\hept{\begin{cases}x\ne0\\x\ne\pm3\end{cases}}\)

b, \(A=\left(\frac{9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x+3}\right):\left(\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right)\)

\(=\frac{9+x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}:\frac{3\left(x-3\right)-x^2}{3x\left(x+3\right)}\)

\(=\frac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}.\frac{3x\left(x+3\right)}{-x^2+3x-9}=\frac{-3}{x-3}\)

c, Với x = 4 thỏa mãn ĐKXĐ thì

\(A=\frac{-3}{4-3}=-3\)

d, \(A\in Z\Rightarrow-3⋮\left(x-3\right)\)

\(\Rightarrow x-3\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\Rightarrow x\in\left\{0;2;4;6\right\}\)

Mà \(x\ne0\Rightarrow x\in\left\{2;4;6\right\}\)