\(a;b\)là hai số dương thỏa mãn: \(a^2+b^2=6\).Chứng minh...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2016

Bình phương 2 vế ta được 

3a2 + 18 - 2a2 - 4ab - 2b2 \(\ge\)0

<=> a- 2b2 - 4ab + 3( a2 + b2\(\ge0\)

<=> 4a2 - 4ab + b2 \(\ge0\)

<=> (2a - b)2 \(\ge0\)(đúng)

AH
Akai Haruma
Giáo viên
31 tháng 3 2020

Lời giải:

Từ ĐKĐB kết hợp BĐT Bunhiacopxky:
\(3(a^2+6)=3(a^2+a^2+b^2)=(1+2)(2a^2+b^2)\geq (\sqrt{2}a+\sqrt{2}b)^2\)

\(\Rightarrow \sqrt{3(a^2+6)}\geq \sqrt{2}(a+b)\) (đpcm)

Dấu "=" xảy ra khi \(\left\{\begin{matrix} a,b>0\\ a^2+b^2=6\\ \frac{1}{\sqrt{2}a}=\frac{\sqrt{2}}{b}\end{matrix}\right.\) hay $a=\sqrt{\frac{6}{5}}; b=2\sqrt{\frac{6}{5}}$

30 tháng 3 2020

ta có: \(\sqrt{3\left(a^2+b^2\right)}\ge\left(a+b\right)^2\sqrt{2}\)

\(\Leftrightarrow3\left(2a^2+b^2\right)\ge2\left(a+b\right)^2\)(vì a2+b2=6)

\(\Leftrightarrow6a^2+3b^2\ge2a^2+4ab+2b^2\)

\(\Leftrightarrow4a^2-4ab+b^2\ge0\\ \Leftrightarrow\left(2a-b\right)^2\ge0\)

(luôn đúng với mọi a;bdương)

=> đpcm

4 tháng 3 2020

\(\left(a+3b\right)\left(b+3a\right)\le\left(\frac{4a+4b}{2}\right)^2=\left(2a+2b\right)^2\)

=>\(\frac{1}{2}\sqrt{\left(a+3b\right)\left(b+3a\right)}\le\frac{1}{2}\left(2a+2b\right)=a+b\)

Mình làm phần dễ nhất rồi, còn lại của bạn đó ^^


 

6 tháng 4 2020

Đặt gif.latex?%5Csqrt%7Ba%7D%3Dx%3B%5Csqrt%7Bb%7D%3Dy. Do đó gif.latex?x&plus;y%3D1. Cần chứng minh:

gif.latex?3%28x%5E2&plus;y%5E2%29%5E2%20-%28x%5E2&plus;y%5E2%29&plus;4x%5E2%20y%5E2%20%5Cgeqq%20%5Cfrac%7B1%7D%7B2%7D%20%5Csqrt%7B%28x%5E2&plus;3y%5E2%29%283x%5E2&plus;y%5E2%29%7D

Or $3(x^2+y^2)^2 -(x^2+y^2)+4x^2 y^2 \geqq  \frac{1}{2} \sqrt{3(x^4+y^4)+10x^2 y^2}  $

Bình phương 2 vế và xét hiệu, ta cần chứng minh:

$ \left( 1/4-xy \right)  \left( 256\, \left( 1/4-xy \right) ^{3}+64\,  \left( 1/4-xy \right) ^{2}+5-16\,xy \right)\geqq 0$

Đó là điều hiển nhiên vì: $xy \leqq 1/4 (x+y)^2 =1/4$

Done.

15 tháng 11 2016

\(\sqrt{3\left(a^2+6\right)}\ge\sqrt{2}\left(a+b\right)\)

\(\Leftrightarrow\sqrt{3\left(2a^2+b^2\right)}\ge\sqrt{2}\left(a+b\right)\)

\(\Leftrightarrow6a^2+3b^2\ge2a^2+4ab+2b^2\)

\(\Leftrightarrow4a^2-4ab+b^2\ge0\)

\(\Leftrightarrow\left(2a-b\right)^2\ge0\)(đúng)

=> ĐPCM

24 tháng 6 2017

Ta có: \(\sqrt{3\left(a^2+6\right)}\ge\left(a+b\right)\sqrt{2}\)

<=> \(3\left(a^2+6\right)\ge2\left(a+b\right)^2\)

<=> \(3\left(a^2+b^2+a^2\right)\ge2a^2+2b^2+4ab\)

<=> \(6a^2+3b^2\ge2a^2+2b^2+4ab\)

<=> \(4a^2-4ab+b^2\ge0\)

<=> \(\left(2a-b\right)^2\ge0\) ( Luôn đúng) => đpcm

=> Dấu = xảy ra <=> \(\left\{{}\begin{matrix}2a=b\\a^2+b^2=6\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}a=\sqrt{\dfrac{6}{5}}=\dfrac{\sqrt{30}}{5}\\b=\dfrac{2\sqrt{30}}{5}\end{matrix}\right.\)

24 tháng 6 2017

đề bảo cm đâu phải là tìm a ; b đâu mà tìm a ; b