K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2024

a + b = m
a - b = n
=> a = (m + n)/2
     b = (m - n)/2
Có: a.b = (m + n)/2.(m - n)/2
            = (m^2 - n^2)/4
=> a^3 - b^3 = (m + n)^3/2^3 - (m - n)^2/2^3
                   = (m + n)^3/8 - (m - n)^3/8
                    = [(m + n)^3 - (m - n)^3]/8
                   = [(m + n - m + n)((m + n)^2 + (m + n)(m - n) + (m - n)^2)]/8
                   = [n(m^2 + n^2 + 2mn + m^2 - n^2 + m^2 + n^2 - 2mn)]/8
                   = n(3m^2 + 2n^2)/8
                   = m^2n − (m^2−n^2)/4 .n

23 tháng 6 2017

a) Ta có:

\(a^2+b^2=\left(a+b\right)^2-2ab=23^2-2.132=265\)

b) Ta có:

\(x^3+3xy+y^3=x^3+3xy\left(x+y\right)+y^3=\left(x+y\right)^3=1\)

23 tháng 6 2017

b,Ta có:

\(x+y=1\Rightarrow x=1-y\)(1)

Thay (1) vào biểu thức cần tìm ta có:

\(\left(1-y\right)^3+3\left(1-y\right)y+y^3\)

\(=1-3y+3y^2-y^3+3\left(y-y^2\right)+y^3\)

\(=1-3y+3y^2-y^3+3y-3y^2+y^3\)

\(=1\)

Vậy.....

Chúc bạn học tốt!!!

10 tháng 7 2017

a) \(4\left(a+b\right)ab=3\left(a-b\right)^2+\left(a+b\right)^2\Leftrightarrow4\left(a+b\right)ab=4a^2+4b^2-4ab\Leftrightarrow\left(a+b\right)ab=a^2+b^2-ab\) (đúng)

=> đẳng thức được cm

b) nếu nghĩ ra thì tớ giải cho

10 tháng 7 2017

b) chịu!! T_T!!

27 tháng 7 2017

b)\(\dfrac{6}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)

\(\dfrac{6}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x-3\right)\left[x+3+1\right]}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x-3\right)\left(x+4\right)}{\left(x-3\right)\left(x+3\right)}\)\(\left\{{}\begin{matrix}x\ne\left\{+-3\right\}\\6=\left(x-3\right)\left(x+4\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left|x\right|\ne3\\x^2+x+\dfrac{1}{4}=18+\dfrac{1}{4}=\dfrac{73}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne+-3\\\left(x+\dfrac{1}{2}\right)^2=\left(\dfrac{\sqrt{73}}{2}\right)^2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=\dfrac{-1-\sqrt{73}}{2}\\x=\dfrac{-1+\sqrt{73}}{2}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
24 tháng 6 2020

Lời giải:

a)

$a+b+c=0\Leftrightarrow (a+b+c)^2=0$

$\Leftrightarrow a^2+b^2+c^2+2(ab+bc+ac)=0$

$\Rightarrow ab+bc+ac=-\frac{a^2+b^2+c^2}{2}\leq 0$

Mà $a^2\geq 0$

Do đó: $a^2(ab+bc+ac)\leq 0$

$\Leftrightarrow a^3b+a^2bc+a^3c\leq 0$ (đpcm)

Dấu "=" xảy ra khi $a=0$

b)

Từ ĐKĐB \(\Rightarrow \left\{\begin{matrix} a+b=(3c+3)\\ 4ab=9c^2\end{matrix}\right.\)

Ta biết rằng $(a+b)^2=(a-b)^2+4ab\geq 4ab$

$\Leftrightarrow (3c+3)^2\geq 9c^2$

$\Leftrightarrow (c+1)^2\geq c^2$

$\Leftrightarrow 2c+1\geq 0\Leftrightarrow c\geq \frac{-1}{2}$ (đpcm)

Vậy.......

15 tháng 1 2018

Ta có:

\(a^2+b^2\le1+ab\)

\(\left(a^2+b^2\right)\left(a^3+b^3\right)\le\left(1+ab\right)\left(a^5+b^5\right)\)

\(a^5+b^5+a^2b^3+a^3b^2\le a^5+b^5+a^6b+ab^6\)

\(a^2b^3+a^3b^2\le a^6b+ab^6\)

\(ab^2+a^2b\le a^5+b^5\)

\(ab^2+a^2b\le a^3+b^3\)

\(a\left(a^2-b^2\right)+b\left(b^2-a^2\right)\ge0\)

\(a\left(a^2-b^2\right)-b\left(a^2-b^2\right)\ge0\)

\(\left(a^2-b^2\right)\left(a-b\right)\ge0\)

\(\left(a-b\right)\left(a+b\right)\left(a-b\right)\ge0\)

\(\left(a-b\right)^2\left(a+b\right)\ge0\)

Do a,b là số dương => a+b>0

(a-b)2\(\ge0\left(lđ\right)\)

=> ĐPCM

chứng minh gì vậy bạn

9 tháng 6 2019

vẫn hè mà e đã hok oi

31 tháng 12 2016

Bài 1: 4

Bài 2: 114 (hình như vậy) 

(ko biết trình bày ah)

31 tháng 12 2016

Bạn cố nhớ cách trình bày giúp mk dc k