Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(a^2+b^2=\left(a+b\right)^2-2ab=23^2-2.132=265\)
b) Ta có:
\(x^3+3xy+y^3=x^3+3xy\left(x+y\right)+y^3=\left(x+y\right)^3=1\)
a) \(4\left(a+b\right)ab=3\left(a-b\right)^2+\left(a+b\right)^2\Leftrightarrow4\left(a+b\right)ab=4a^2+4b^2-4ab\Leftrightarrow\left(a+b\right)ab=a^2+b^2-ab\) (đúng)
=> đẳng thức được cm
b) nếu nghĩ ra thì tớ giải cho
b)\(\dfrac{6}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(\dfrac{6}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x-3\right)\left[x+3+1\right]}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x-3\right)\left(x+4\right)}{\left(x-3\right)\left(x+3\right)}\)\(\left\{{}\begin{matrix}x\ne\left\{+-3\right\}\\6=\left(x-3\right)\left(x+4\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left|x\right|\ne3\\x^2+x+\dfrac{1}{4}=18+\dfrac{1}{4}=\dfrac{73}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne+-3\\\left(x+\dfrac{1}{2}\right)^2=\left(\dfrac{\sqrt{73}}{2}\right)^2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=\dfrac{-1-\sqrt{73}}{2}\\x=\dfrac{-1+\sqrt{73}}{2}\end{matrix}\right.\)
Lời giải:
a)
$a+b+c=0\Leftrightarrow (a+b+c)^2=0$
$\Leftrightarrow a^2+b^2+c^2+2(ab+bc+ac)=0$
$\Rightarrow ab+bc+ac=-\frac{a^2+b^2+c^2}{2}\leq 0$
Mà $a^2\geq 0$
Do đó: $a^2(ab+bc+ac)\leq 0$
$\Leftrightarrow a^3b+a^2bc+a^3c\leq 0$ (đpcm)
Dấu "=" xảy ra khi $a=0$
b)
Từ ĐKĐB \(\Rightarrow \left\{\begin{matrix} a+b=(3c+3)\\ 4ab=9c^2\end{matrix}\right.\)
Ta biết rằng $(a+b)^2=(a-b)^2+4ab\geq 4ab$
$\Leftrightarrow (3c+3)^2\geq 9c^2$
$\Leftrightarrow (c+1)^2\geq c^2$
$\Leftrightarrow 2c+1\geq 0\Leftrightarrow c\geq \frac{-1}{2}$ (đpcm)
Vậy.......
Ta có:
\(a^2+b^2\le1+ab\)
\(\left(a^2+b^2\right)\left(a^3+b^3\right)\le\left(1+ab\right)\left(a^5+b^5\right)\)
\(a^5+b^5+a^2b^3+a^3b^2\le a^5+b^5+a^6b+ab^6\)
\(a^2b^3+a^3b^2\le a^6b+ab^6\)
\(ab^2+a^2b\le a^5+b^5\)
\(ab^2+a^2b\le a^3+b^3\)
\(a\left(a^2-b^2\right)+b\left(b^2-a^2\right)\ge0\)
\(a\left(a^2-b^2\right)-b\left(a^2-b^2\right)\ge0\)
\(\left(a^2-b^2\right)\left(a-b\right)\ge0\)
\(\left(a-b\right)\left(a+b\right)\left(a-b\right)\ge0\)
\(\left(a-b\right)^2\left(a+b\right)\ge0\)
Do a,b là số dương => a+b>0
(a-b)2\(\ge0\left(lđ\right)\)
=> ĐPCM
a + b = m
a - b = n
=> a = (m + n)/2
b = (m - n)/2
Có: a.b = (m + n)/2.(m - n)/2
= (m^2 - n^2)/4
=> a^3 - b^3 = (m + n)^3/2^3 - (m - n)^2/2^3
= (m + n)^3/8 - (m - n)^3/8
= [(m + n)^3 - (m - n)^3]/8
= [(m + n - m + n)((m + n)^2 + (m + n)(m - n) + (m - n)^2)]/8
= [n(m^2 + n^2 + 2mn + m^2 - n^2 + m^2 + n^2 - 2mn)]/8
= n(3m^2 + 2n^2)/8
= m^2n − (m^2−n^2)/4 .n