Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT AM-GM:
\(\frac{a^4}{(a+2)(b+2)}+\frac{a+2}{27}+\frac{b+2}{27}+\frac{1}{9}\geq 4\sqrt[4]{\frac{a^4}{27.27.9}}=\frac{4a}{9}\)
\(\frac{b^4}{(b+2)(c+2)}+\frac{b+2}{27}+\frac{c+2}{27}+\frac{1}{9}\geq \frac{4b}{9}\)
\(\frac{c^4}{(c+2)(a+2)}+\frac{c+2}{27}+\frac{a+2}{27}+\frac{1}{9}\geq \frac{4c}{9}\)
Cộng theo vế và rút gọn:
\(\frac{a^4}{(a+2)(b+2)}+\frac{b^4}{(b+2)(c+2)}+\frac{c^4}{(c+2)(a+2)}+\frac{2(a+b+c)}{27}+\frac{7}{9}\geq\frac{4(a+b+c)}{9}\)
\(\frac{a^4}{(a+2)(b+2)}+\frac{b^4}{(b+2)(c+2)}+\frac{c^4}{(c+2)(a+2)}\geq \frac{10(a+b+c)}{27}-\frac{7}{9}=\frac{30}{27}-\frac{7}{9}=\frac{1}{3}\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=1$
Lời giải:
Ta có:
\(\text{VT}=\frac{a}{(a+1)(b+1)}+\frac{b}{(b+1)(c+1)}+\frac{c}{(c+1)(a+1)}\)
\(=\frac{a(c+1)+b(a+1)+c(b+1)}{(a+1)(b+1)(c+1)}=\frac{ab+bc+ac+a+b+c}{abc+(ab+bc+ac)+(a+b+c)+1}\)
\(=\frac{ab+bc+ac+a+b+c}{2+(a+b+c)+ab+bc+ac}\)
Ta cần chứng minh \(\text{VT}\geq \frac{3}{4}\)
\(\Leftrightarrow \frac{ab+bc+ac+a+b+c}{2+(a+b+c)+ab+bc+ac}\geq \frac{3}{4}\)
\(\Leftrightarrow 4(ab+bc+ac+a+b+c)\geq 3(ab+bc+ac+a+b+c)+6\)
\(\Leftrightarrow ab+bc+ac+a+b+c\geq 6\)
\(\Leftrightarrow ab+bc+ac+a+b+c\geq 6\sqrt[6]{ab.bc.ac.a.b.c}\)
(Đúng theo BĐT Cô-si)
Do đó ta có đpcm
Dấu bằng xảy ra khi \(a=b=c=1\)
Áp dụng BĐT AM-GM ta có:
\(\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{b+1}{8}+\dfrac{c+1}{8}\)
\(\ge3\sqrt[3]{\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}\cdot\dfrac{b+1}{8}\cdot\dfrac{c+1}{8}}=\dfrac{3a}{4}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\dfrac{b^3}{\left(1+c\right)\left(1+a\right)}+\dfrac{c+1}{8}+\dfrac{a+1}{8}\ge\dfrac{3b}{4};\dfrac{c^3}{\left(1+a\right)\left(1+b\right)}+\dfrac{a+1}{8}+\dfrac{b+1}{8}\ge\dfrac{3c}{4}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT+\dfrac{2\left(a+b+c+3\right)}{8}\ge\dfrac{3\left(a+b+c\right)}{4}\)
\(\Leftrightarrow VT+\dfrac{2\left(3\sqrt[3]{abc}+3\right)}{8}\ge\dfrac{3\cdot3\sqrt[3]{abc}}{4}\Leftrightarrow VT\ge\dfrac{3}{4}=VP\)
Khi \(a=b=c=1\)
Giải:
\(\dfrac{a}{\left(a+1\right)\left(b+1\right)}+\dfrac{b}{\left(b+1\right)\left(c+1\right)}+\dfrac{c}{\left(c+1\right)\left(a+1\right)}\ge\dfrac{3}{4}\)(*)
\(\Leftrightarrow\) \(\dfrac{a\left(c+1\right)+b\left(a+1\right)+c\left(b+1\right)}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\dfrac{3}{4}\)
\(\Leftrightarrow\) \(\dfrac{ac+a+ab+b+bc+c}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\) \(\ge\) \(\dfrac{3}{4}\)
Do a+1 ; b+1; c+1 >0
\(\Rightarrow\) 4ac+4a+4ab+4b+4bc+4c \(\ge\) 3abc+3ac+3bc+3ab+3a+3b+3c+3
\(\Leftrightarrow\) ac+ab+bc+a+b+c -6 \(\ge\) 0
Áp dụng BĐT Cô-si cho 3 số
Ta có: a+b+c \(\ge\) \(3\sqrt[3]{abc}=3\)
ab+bc+ca \(\ge\) \(3\sqrt[3]{\left(abc\right)^2}\) = 3
\(\Rightarrow\)ac+ab+bc+a+b+c -6 \(\ge\) 0 ( luôn đúng)
\(\Rightarrow\) (*) được chứng minh
Dấu "=" xảy ra \(\Leftrightarrow\) a=b=c=1
Lời giải:
Áp dụng BĐT AM-GM ta có:
\(\frac{a^3}{(b+2)(c+3)}+\frac{b+2}{36}+\frac{c+3}{48}\geq 3\sqrt[3]{\frac{a^3}{36.48}}=\frac{a}{4}\)
Tương tự:\(\frac{b^3}{(c+2)(a+3)}+\frac{c+2}{36}+\frac{a+3}{48}\geq \frac{b}{4}\)
\(\frac{c^3}{(a+2)(b+3)}+\frac{a+2}{36}+\frac{b+3}{48}\geq \frac{c}{4}\)
Cộng theo vế các BĐT trên và rút gọn ta có:
\(\frac{a^3}{(b+2)(c+3)}+\frac{b^3}{(c+2)(a+3)}+\frac{c^3}{(a+2)(b+3)}\geq \frac{29}{144}(a+b+c)-\frac{17}{48}\)
Mà cũng theo AM-GM:
\(a+b+c\geq 3\sqrt[3]{abc}=3\)
\(\Rightarrow \frac{a^3}{(b+2)(c+3)}+\frac{b^3}{(c+2)(a+3)}+\frac{c^3}{(a+2)(b+3)}\geq \frac{29}{144}(a+b+c)-\frac{17}{48}\geq \frac{29}{144}.3-\frac{17}{48}=\frac{1}{4}\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=1$
đặt ab=x, bc=y, ac=z
suy ra \(x^3+y^3+z^3=3xyz\)
pt thanh nhân tử \(\left(x+y+z\right)\left(x^2+y^2+z^2-xz-xy-yz\right)=0\)
do x,y,z>0suy ra x+y+z>0
nên suy ra \(x^2+y^2+z^2-xz-yz-xy=0\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xz-2xy-2yz=0\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
suy ra x=y=z
thế vào pt ta có dpcm
Đặt \(A=\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\)
Vì \(a,b,c>0\)nên áp dụng bất đẳng thức Cô-si cho 3 số dương, ta được:
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge3\sqrt[3]{\frac{a^3\left(1+b\right)\left(1+c\right)}{\left(1+b\right)\left(1+c\right).64}}\)\(=3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\left(1\right)\)
Chứng minh tương tự, ta được:
\(\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{1+c}{8}+\frac{1+a}{8}\ge\frac{3b}{4}\left(2\right)\)
\(\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{1+a}{8}+\frac{1+b}{8}\ge\frac{3a}{4}\left(3\right)\)
Từ (1), (2), (3), ta được:
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\)\(+\frac{1+a}{8}+\frac{1+b}{8}+\frac{1+c}{8}+\frac{1+a}{8}+\frac{1+b}{8}+\frac{1+c}{8}\)\(\ge\frac{3a}{4}+\frac{3b}{4}+\frac{3c}{4}\)
\(\Leftrightarrow A+\frac{1+a}{4}+\frac{1+b}{4}+\frac{1+c}{4}\ge\frac{3a}{4}+\frac{3b}{4}+\frac{3c}{4}\)
\(\Leftrightarrow A+\frac{1+a+1+b+1+c}{4}\ge\frac{3a+3b+3c}{4}\)
\(\Leftrightarrow A+\frac{3+a+b+c}{4}\ge\frac{3\left(a+b+c\right)}{4}\)
\(\Leftrightarrow A\ge\frac{3\left(a+b+c\right)}{4}-\frac{3-a-b-c}{4}\)
\(\Leftrightarrow A\ge\frac{3\left(a+b+c\right)-\left(a+b+c\right)}{4}-\frac{3}{4}\)
\(\Leftrightarrow A\ge\frac{2\left(a+b+c\right)}{4}-\frac{3}{4}\left(4\right)\)
Mặt khác, vì \(a,b,c>0\)nên áp dụng bất đẳng thức Cô-si cho 3 số dương, ta được:
\(a+b+c\ge3\sqrt[3]{abc}\)
Mà \(abc\ge1\Leftrightarrow\sqrt[3]{abc}\ge1\Leftrightarrow3\sqrt[3]{abc}\ge3\)
Do đó:
\(a+b+c\ge3\)
\(\Leftrightarrow2\left(a+b+c\right)\ge6\)
\(\Leftrightarrow\frac{2\left(a+b+c\right)}{4}\ge\frac{6}{4}=\frac{3}{2}\)
\(\Leftrightarrow\frac{2\left(a+b+c\right)}{4}-\frac{3}{4}\ge\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\left(5\right)\)
Từ (4) và (5), ta được:
\(A\ge\frac{3}{4}\)(điều phải chứng minh)
Dấu bằng xảy ra.
\(\Leftrightarrow\hept{\begin{cases}a=b=c>0\\abc=1\end{cases}}\Leftrightarrow a=b=c=1\)
Vậy \(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{3}{4}\)với \(a,b,c>0\)và \(abc\ge1\)
Với x,y>0x,y>0 đã cho, áp dụng bất đẳng thức Cô si ta có
\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{1+b}{x}+\dfrac{1+c}{y}\ge\dfrac{3a}{\sqrt[3]{xy}}(1+b)(1+c)a3+x1+b+y1+c≥3xy3a
Kỳ vọng rằng bất đẳng thức cần chứng minh trở thành đẳng thức khi a=b=c=1a=b=c=1, ta chọn x>0x>0 sao cho \dfrac{a^3}{\left(1+b\right)\left(1+c\right)}=\dfrac{1+b}{x}=\dfrac{1+c}{y}(1+b)(1+c)a3=x1+b=y1+c xảy ra khi a=b=c=1a=b=c=1, tức là \dfrac{1}{4}=\dfrac{2}{x}=\dfrac{2}{y}\Leftrightarrow x=y=841=x2=y2⇔x=y=8. Vì vậy
\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{1+b}{8}+\dfrac{1+c}{8}\ge\dfrac{3a}{4}(1+b)(1+c)a3+81+b+81+c≥43a
Viết hai bất đẳng thức tương tự rồi cộng theo vế ba bất đẳng thức này ta có
\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{b^3}{\left(1+c\right)\left(1+a\right)}+\dfrac{c^3}{\left(1+a\right)\left(1+b\right)}+\dfrac{3}{4}+\dfrac{a+b+c}{4}\ge(1+b)(1+c)a3+(1+c)(1+a)b3+(1+a)(1+b)c3+43+4a+b+c≥
\dfrac{3}{4}\left(a+b+c\right)43(a+b+c)
Hay \dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{b^3}{\left(1+c\right)\left(1+a\right)}+\dfrac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\dfrac{1}{2}\left(a+b+c\right)-\dfrac{3}{4}(1+b)(1+c)a3+(1+c)(1+a)b3+(1+a)(1+b)c3≥21(a+b+c)−43
Mà a+b+c\ge3\sqrt[3]{abc}\ge3a+b+c≥33abc≥3 . Suy ra
\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{b^3}{\left(1+c\right)\left(1+a\right)}+\dfrac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\dfrac{3}{4}(1+b)(1+c)a3+(1+c)(1+a)b3+(1+a)(1+b)c3≥43
wow
wow, chắc xu học lớp 9