\(a,b,c\in Nsao;a^2+b^2+10⋮ab\)

chứng minh a,b nguyên tố cùng nhau

 

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2017

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}< 1\)

Nên \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}< \frac{42}{42}\)

Suy ra \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}< =\frac{41}{42}\) ( đpcm )

16 tháng 7 2018

Ta có: \(\frac{a}{c}=\frac{a^2+b^2}{c^2+b^2}\)\(\Leftrightarrow a\left(c^2+b^2\right)=c\left(a^2+b^2\right)\)\(\Leftrightarrow ac^2+ab^2=a^2c+b^2c\Leftrightarrow ac\left(c-a\right)-b^2\left(c-a\right)=0\)

\(\Leftrightarrow\left(c-a\right)\left(ac-b^2\right)=0\)

Vì \(a\ne c\)nên \(c-a\ne0\)

Do đó \(ac-b^2=0\Leftrightarrow ac=b^2\Rightarrow\sqrt{ac}=b\)

Giả sử \(a^2+b^2+c^2\)là số nguyên tố

Ta có \(a^2+b^2+c^2=a^2+ac+c^2=\left(a+c\right)^2-ac=\left(a+c\right)^2-b^2\)\(=\left(a-b+c\right)\left(a+b+c\right)\)

\(=\left[\left(\sqrt{a}\right)^2-2\sqrt{ac}+\left(\sqrt{c}\right)^2+\sqrt{ac}\right]\left[\left(\sqrt{a}\right)^2-2\sqrt{ac}+\left(\sqrt{c}\right)^2+3\sqrt{ac}\right]\)

\(\left[\left(\sqrt{a}-\sqrt{c}\right)^2+\sqrt{ac}\right]\left[\left(\sqrt{a}-\sqrt{c}\right)^2+3\sqrt{ac}\right]\)

Vì \(a^2+b^2+c^2\)là số nguyên tố nên có một ước số là 1

Mà \(\left(\sqrt{a}-\sqrt{c}\right)^2+\sqrt{ac}< \left(\sqrt{a}-\sqrt{c}\right)^2+3\sqrt{ac}\)

nên \(\left(\sqrt{a}-\sqrt{c}\right)^2+\sqrt{ac}=1\Leftrightarrow\left(\sqrt{a}-\sqrt{c}\right)^2=1-\sqrt{ac}\)

Vì \(a\ne c\Rightarrow\sqrt{a}\ne\sqrt{c}\Rightarrow\sqrt{a}-\sqrt{c}\ne0\)\(\Rightarrow\left(\sqrt{a}-\sqrt{c}\right)^2>0\)

Do đó \(1-\sqrt{ac}>0\Rightarrow\sqrt{ac}< 1\Rightarrow ac< 1\)(1)

Mà \(a^2+b^2>0\)và \(c^2+b^2>0\)nên \(\frac{a^2+b^2}{c^2+b^2}>0\Rightarrow\frac{a}{c}>0\Rightarrow\)a, c cùng dấu \(\Rightarrow ac>0\)(2)

Từ (1), (2) suy ra \(0< ac< 1\)

Mà a,c là số nguyên nên ac là số nguyên 

Do đó không có giá trị a,c thỏa mãn

suy ra điều giả sử sai

Vậy \(a^2+b^2+c^2\) không thể là số nguyên tố

1 tháng 12 2019

tự giải vl

6 tháng 11 2017

Giả sử   \(\frac{a^2+b^2}{ab-1}=k\left(k\in Z\right)\). Ta sẽ đi tìm k và chứng minh k là số nguyên tố.

Đặt \(m=a+b;n=a-b\), ta có \(\frac{a^2+b^2}{ab-1}=k\Rightarrow\frac{m^2+n^2}{m^2-n^2-4}=\frac{k}{2}\)

TH1: Nếu trong a và b có một số chẵn, một số lẻ:

Khi đó k là số lẻ. Đặt \(d=\left(m^2+n^2;m^2-n^2-4\right)\Rightarrow d=\left(2m^2-4,2n^2+4\right)\)

\(\Leftrightarrow\) d | 2(m2 + n2) = 4(a2 + b2)

Mà \(\hept{\begin{cases}m^2+n^2=kd\\m^2-n^2-4=2d\end{cases}}\)

\(\Leftrightarrow2x^2-4=d\left(k+2\right)\Rightarrow\) d chia hết 2.

Lại có a2 + b2 là số lẻ nên d = 2 hoặc d = 4.

Thay vào hệ bên trên và giả thiết thì (a,b) = (-2;-1) hoặc (2;1). Khi đó k = 5 và nó là số nguyên tố.

TH2: Nếu cả a và b đều lẻ

\(\Rightarrow a=2k+1;b=2h+1\Rightarrow k=\frac{2\left(k^2+h^2+k+h\right)+1}{2kh+k+h}\) là số lẻ.

Tương tự như bên trên ta có d | 4(a2 + b2) = 8(2k2 + 2h2 + 2k + 2h + 1) 

Và 2m2 - 4 = (k+2)d \(\Rightarrow d⋮2\Rightarrow d\in\left\{2;4;8\right\}\)

Thế vào hệ ta cũng tìm được (a;b) = (3;1) hoặc (-3;-10 và k = 5.

Vậy k luôn bằng 5 và nó là số nguyên tố.

1 tháng 3 2017

mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !

1 tháng 3 2017

bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu

bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)

những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện