Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo bất đẳng thức côsi ta có :
\(\left(a+b\right)^2\ge4ab\)
\(\left(b+c\right)^2\ge4bc\)
\(\left(c+a\right)^2\ge4ca\)
\(\Rightarrow\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\ge64a^2b^2c^2\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
1) Theo bđt AM-GM,ta có: \(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)
Suy ra \(\frac{a^2}{b+c}\ge a-\frac{b+c}{4}\)
Thiết lập hai BĐT còn lại tương tự và cộng theo vế ta có đpcm
Ta có : \(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}-a-b-c\)
= \(\frac{ab-ac}{c}+\frac{bc-ab}{a}+\frac{ca-bc}{b}\)
= \(\frac{ab\left(ab-ac\right)}{abc}+\frac{\left(bc\left(bc-ab\right)\right)}{abc}+\frac{ca\left(ca-bc\right)}{abc}\)
= \(\frac{a^2b\left(b-c\right)+b^2c\left(c-a\right)+c^2a\left(a-b\right)}{abc}\) \(\ge0\)
Do a,b,c > 0
Cách 2 . Áp dụng bất đẳng thức Cauchy , ta có :
\(\frac{ab}{c}+\frac{bc}{a}\ge2.\sqrt{\frac{ab}{c}.\frac{bc}{a}}=2b\)
\(\frac{bc}{a}+\frac{ca}{b}\ge2c\)
\(\frac{ca}{b}+\frac{ab}{c}\ge2a\)
Cộng vế theo vế => \(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)\ge2\left(a+b+c\right)\)
=> \(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\)
Đẳng thức xảy ra <=> a = b = c
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9.\)
\(a+b+c\ge3\sqrt[3]{abc}\) 1
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\) 2
nhân 1 vs 2
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\sqrt[3]{\frac{abc}{abc}}=9\)
Theo BĐT AM-GM :
\(\sqrt{b}=\sqrt{b\cdot1}\le\frac{b+1}{2}\)
\(\Rightarrow\frac{a}{\sqrt{b}}\ge\frac{a}{\frac{b+1}{2}}=\frac{2a}{b+1}\)
Dấu "=" xảy ra \(\Leftrightarrow b=1\)
+ Tương tự ta cm đc :
\(\frac{b}{\sqrt{c}}\ge\frac{2b}{c+1}\). Dấu "=" xảy ra \(\Leftrightarrow c=1\)
\(\frac{c}{\sqrt{a}}\ge\frac{2c}{a+1}\). Dấu "=" xảy ra \(\Leftrightarrow a=1\)
Do đó : \(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{c}}+\frac{c}{\sqrt{a}}\ge2\left(\frac{a}{b+1}+\frac{b}{c+}+\frac{c}{a+1}\right)\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
Bài làm
Đặt x = a + b , y = b + c , z = c + a
Thì \(a=\frac{x+z-y}{2};b=\frac{x+y-z}{2};c=\frac{y+z-x}{2}\)
Ta có: \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\frac{\frac{x+z-y}{2}}{y}+\frac{\frac{x+y-z}{2}}{z}+\frac{\frac{y+z-x}{2}}{x}\)
\(\Leftrightarrow\frac{x+z-y}{2}.\frac{1}{y}+\frac{x+y-z}{2}.\frac{1}{z}+\frac{y+z-x}{2}.\frac{1}{x}\)
\(\Leftrightarrow\frac{x+z-y}{2y}+\frac{x+y-z}{2z}+\frac{y+z-x}{2x}\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{x}{y}+\frac{y}{x}+\frac{z}{y}+\frac{y}{z}+\frac{z}{x}+\frac{x}{z}-3\right)\)
\(\Leftrightarrow-3.\frac{1}{2}+\frac{1}{2}\left(\frac{x}{y}+\frac{y}{x}+\frac{y}{z}+\frac{z}{y}+\frac{z}{x}+\frac{x}{z}\right)\)
\(\Leftrightarrow-\frac{3}{2}+\frac{1}{2}\left(\frac{x}{y}+\frac{y}{x}+\frac{y}{z}+\frac{z}{y}+\frac{z}{x}+\frac{x}{z}\right)\ge\frac{1}{2}.6-\frac{3}{2}=\frac{3}{2}\) ( đpcm )
Cre chi tiết: Bấm vào đây