K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2018

\(a+b+c=0\Leftrightarrow a+b=-c\Leftrightarrow\left(a+b\right)^2=\left(-c\right)^2\Leftrightarrow a^2+b^2+2ab=c^2\Leftrightarrow a^2+b^2-c^2=-2ab\)

tương tự ta có: b2+c2-a2=-2bc ;  a2+c2-b2=-2ac

Do đó \(P=\frac{1}{-2bc}+\frac{1}{-2ca}+\frac{1}{-2ab}=\frac{a+b+c}{-2abc}=0\)

27 tháng 6 2019

abc khác 0 nhé ạ

27 tháng 6 2019

Do \(a+b+c=0\)

\(\Rightarrow c=-a-b\)

\(\Rightarrow c^2=a^2+2ab+b^2\)

Tương tự,ta có:

\(a^2=b^2+2bc+c^2\)

\(b^2=a^2+2ac+c^2\)

Thay vào bài toán,ta được:

\(P=\frac{c^2}{a^2+b^2-\left(a^2+2ab+b^2\right)}+\frac{a^2}{b^2+c^2-\left(b^2+2bc+c^2\right)}+\frac{b^2}{c^2+a^2-\left(a^2+2ac+c^2\right)}\)

\(P=\frac{-c^2}{2ab}+\frac{-a^2}{2bc}+\frac{-b^2}{2ac}\)

\(P=\frac{-\left(a^3+b^3+c^3\right)}{2abc}\)

Do \(a+b+c=0\Rightarrow-a=b+c\)

\(\Rightarrow-a^3=b^3+c^3+3bc\left(b+c\right)\)

\(\Rightarrow-a^3=b^3+c^3-3abc\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

Khi đó,ta có:
\(P=\frac{-\left(3abc\right)}{2abc}=-\frac{3}{2}\)

28 tháng 2 2020

Tham khao =)) 

Câu hỏi của Vu Quang Huy - Toán lớp 8 - Học toán với OnlineMath

30 tháng 6 2018

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{ab+bc+ca}{abc}=0\Rightarrow ab+bc+ca=0\\ \)

\(\Rightarrow bc=-ab-ac,ca=-ab-bc,ab=-bc-ca\)

\(\Rightarrow\frac{a^2+bc}{a^2+2bc}=\frac{a^2+bc}{a^2+bc+bc}=\frac{a^2+bc}{a^2+bc-ca-ab}=\frac{a^2+bc}{\left(a-b\right).\left(a-c\right)}\)

     Làm tương tự. có: \(\frac{b^2+ca}{b^2+2ca}=\frac{b^2+ca}{b^2+ca-ab-bc}=\frac{b^2+ca}{\left(a-b\right).\left(c-b\right)}\)

 \(\frac{c^2+ab}{c^2+2ab}=\frac{c^2+ab}{c^2+ab-ca-bc}=\frac{c^2+ab}{\left(b-c\right).\left(a-c\right)}\)

\(\Rightarrow A=\frac{a^2+bc}{\left(a-b\right).\left(a-c\right)}+\frac{b^2+ca}{\left(a-b\right).\left(c-b\right)}+\frac{c^2+ab}{\left(b-c\right).\left(a-c\right)}\)

\(=\frac{\left(a^2+bc\right).\left(b-c\right)}{\left(a-b\right).\left(b-c\right).\left(a-c\right)}-\frac{\left(b^2+ca\right).\left(a-c\right)}{\left(a-b\right).\left(b-c\right).\left(a-c\right)}+\frac{\left(c^2+ab\right).\left(a-b\right)}{\left(a-b\right).\left(b-c\right).\left(a-c\right)}\)

Sau đó bạn thực hiện tiếp nhé.

2 tháng 8 2021

Bài 1: Cho \(a,b,c\ge0:a^2+b^2+c^2=3\). CMR: \(a^4b^4+b^4c^4+c^4a^4\le3\)

Bài 2: Cho \(a,b,c\ge0\). CMR: \(a^2+b^2+c^2+2abc+1\ge2\left(ab+bc+ca\right)\)

Bài 3: Cho \(a,b,c\ge0:a^2+b^2+c^2=a+b+c\). CMR: \(a^2b^2+b^2c^2+c^2a^2\le ab+bc+ca\)

Bài 4: Cho \(a,b,c\ge0\). CMR: \(4\left(a+b+c\right)^3\ge27\left(ab^2+bc^2+ca^2+abc\right)\)

Bài 5: Cho \(a,b,c\ge0:a+b+c=3\).CMR: \(\frac{1}{2bc^2+1}+\frac{1}{2ca^2+1}+\frac{1}{2ab^2+1}\ge1\)

5 tháng 7 2016

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

=>\(\frac{1}{a}=-\left(\frac{1}{b}+\frac{1}{c}\right)\)

=>\(\frac{1}{a^2}=-\left(\frac{1}{ab}+\frac{1}{ca}\right)\)

cm tương tự: \(\frac{1}{b^2}=-\left(\frac{1}{ab}+\frac{1}{bc}\right)\)

                     \(\frac{1}{c^2}=-\left(\frac{1}{ca}+\frac{1}{bc}\right)\)

=> \(N=-\left[bc\left(\frac{1}{ab}+\frac{1}{ca}\right)+ca\left(\frac{1}{ab}+\frac{1}{bc}\right)+ab\left(\frac{1}{ca}+\frac{1}{bc}\right)\right]\)

          \(=-\left[\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}+\frac{a}{c}+\frac{b}{c}\right]\)

            \(=-\left[\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}\right]\)    (1)

Ta có : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

=>\(\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}=0\)

=>\(1+\frac{b+c}{a}+1+\frac{a+c}{b}+1+\frac{a+b}{c}=0\)

=>\(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=-3\)   (2)

Từ (1) và (2) =>N=3

        

31 tháng 10 2019

Ta có: \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\)

\(\Rightarrow\frac{bcx+acy+abz}{abc}=0\)

\(\Rightarrow bcx+acy+abz=0\)

Lại có:\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2\)

\(\Rightarrow\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2.\frac{bcx+acy+abz}{xyz}=4\)(bình phương hai vế)

\(\Rightarrow\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}=4\)(Vì \(bcx+acy+abz=0\))

31 tháng 10 2019

Từ (1) \(\Rightarrow bcx+acy+abz=0\)

Gọi \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2\left(2\right)\)

Từ (2) \(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{ab}{xy}+\frac{ac}{xz}+\frac{bc}{yz}\right)=0\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=4-\left(\frac{abz+acy+bcx}{xyz}\right)\)

\(=4\)

\(b,\frac{ab}{a^2+b^2+c^2}+\frac{bc}{b^2+c^2-a^2}+\frac{ca}{c^2+a^2-b^2}\)

Từ \(a+b+c=0\Rightarrow a+b=-c\Rightarrow a^2+b^2-c^2=-2ab\)

Tương tự \(b^2+c^2-a^2=-2bc\)và \(c^2+a^2-b^2=-2ac\)

\(\Rightarrow\frac{ab}{-2ab}+\frac{bc}{-2bc}+\frac{ca}{-2ca}=\frac{1}{-2}+\frac{1}{-2}+\frac{1}{-2}\)

\(=-\frac{3}{2}\)

16 tháng 9 2020

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

\(\Leftrightarrow\frac{bc+ca+ab}{abc}=0\)

\(\Leftrightarrow bc+ca+ab=0\)

\(\Leftrightarrow\hept{\begin{cases}bc=-ab-ca\\ca=-ab-bc\\ab=-ca-bc\end{cases}}\)

Ta có : \(A=\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\)

\(\Leftrightarrow A=\frac{a^2}{a^2+bc-ab-ca}+\frac{b^2}{b^2+ac-ab-bc}+\frac{c^2}{c^2+ab-ca-bc}\)

\(\Leftrightarrow A=\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-a\right)\left(b-c\right)}+\frac{c^2}{\left(c-a\right)\left(c-b\right)}\)

\(\Leftrightarrow A=\frac{a^2}{\left(a-b\right)\left(a-c\right)}-\frac{b^2}{\left(b-c\right)\left(a-b\right)}+\frac{c^2}{\left(a-c\right)\left(b-c\right)}\)

\(\Leftrightarrow A=\frac{a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(\Leftrightarrow A=\frac{a^2\left(b-c\right)-b^2\left[\left(b-c\right)+\left(a-b\right)\right]+c^2\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(\Leftrightarrow A=\frac{a^2\left(b-c\right)-b^2\left(b-c\right)-b^2\left(a-b\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(\Leftrightarrow A=\frac{\left(a^2-b^2\right)\left(b-c\right)-\left(b^2-c^2\right)\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(\Leftrightarrow A=\frac{\left(a+b\right)\left(a-b\right)\left(b-c\right)-\left(b+c\right)\left(b-c\right)\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(\Leftrightarrow A=\frac{\left(a-b\right)\left(b-c\right)\left[\left(a+b\right)-\left(b+c\right)\right]}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(\Leftrightarrow A=\frac{\left(a-b\right)\left(a-c\right)\left(b-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=1\)

3 tháng 12 2023

a, b, c chưa khác 0 bạn nhé