K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
12 tháng 5 2021

\(AD//BC\)nên \(\left(SBC\right)//AD\).

\(d\left(AD,SC\right)=d\left(AD,\left(SBC\right)\right)=d\left(A,\left(SBC\right)\right)\)

Đặt \(AB=BC=CD=DA=a\).

\(\widehat{SBA}=45^o\Rightarrow SA=a\).

Kẻ \(AH\perp SB\).

\(AH=\frac{a\sqrt{2}}{2}\).

\(d\left(AD,SC\right)=d\left(AD,\left(SBC\right)\right)=d\left(A,\left(SBC\right)\right)=AH=\frac{a\sqrt{2}}{2}\).

SA=SC

OA=OC

=>SO là trung trực của AC

=>SO vuông góc AC(1)

SB=SD

OB=OD

=>SO là trung trực của BD

=>SO vuông góc BD(2)

Từ (1), (2) suy ra SO vuông góc (ABCD)

=>SO vuông góc CB

NV
28 tháng 1 2021

\(SA=SB=AB\Rightarrow\Delta SAB\) đều

Do SA=SB=SC=SD \(\Rightarrow SO\perp\left(ABCD\right)\)

\(AB||CD\Rightarrow\left(SA;CD\right)=\left(SA;AB\right)=\widehat{SAB}=60^0\)

b.

\(SO\perp\left(ABCD\right)\Rightarrow SO\perp BC\Rightarrow\left(SO;BC\right)=90^0\)

c.

Ta có OM là đường trung bình tam giác SBD \(\Rightarrow OM||SD\)

\(\Rightarrow\left(SD;CM\right)=\left(OM;CM\right)=\widehat{OMC}\)

\(OM=\dfrac{1}{2}SD=a\) ; \(OC=\dfrac{1}{2}AC=\dfrac{1}{2}\sqrt{AB^2+AD^2}=\dfrac{a\sqrt{5}}{2}\)

\(cos\widehat{SBC}=\dfrac{1}{4}\Rightarrow CM=\sqrt{BM^2+BC^2-2BM.BC.cos\widehat{SBC}}=\dfrac{a\sqrt{6}}{2}\)

\(cos\widehat{OMC}=\dfrac{OM^2+CM^2-OC^2}{2OM.CM}=\dfrac{5\sqrt{6}}{24}\)

\(\Rightarrow\widehat{OMC}\simeq59^0\)

18 tháng 5 2021

undefined

20 tháng 11 2017

D:\(-̣\left(-\dfrac{2}{3}\right)^2\)

NV
26 tháng 2 2023

Đề bài thiếu dữ liệu định vị điểm S (ví dụ SC bằng bao nhiêu đó) nên ko thể tính góc giữa SB và (ABCD)

a: Xét ΔBAC có BA=BC và góc ABC=60 độ

nên ΔABC đều

=>\(S_{ABC}=\dfrac{a^2\sqrt{3}}{4}\)

=>\(S_{ABCD}=\dfrac{a^2\sqrt{3}}{2}\)

22 tháng 6 2021

A B C D S O I J H

a) Hình chóp đều S.ABCD có O là tâm đáy, suy ra \(SO\perp\left(ABCD\right)\Rightarrow CB\perp SO\)

Hình vuông ABCD có I,J lần lượt là trung điểm BC,AD, suy ra \(CB\perp IJ\)

Vậy \(CB\perp\left(SIJ\right)\)hay \(\left(SBC\right)\perp\left(SIJ\right).\)

b) Ta có: \(OC=\frac{CD}{\sqrt{2}}=a;SC=2a\Rightarrow\frac{OC}{SC}=\frac{1}{2}\)

\(\hept{\begin{cases}SO\perp\left(ABCD\right)\\C\in\left(ABCD\right)\end{cases}}\Rightarrow\left(SC,ABCD\right)=\widehat{SCO}=arc\cos\left(\frac{OC}{SC}\right)=60^0\)(Vì \(\widehat{SCO}< 90^0\))

b) Lấy H thuộc SI sao cho JH vuông góc SI

\(\hept{\begin{cases}AD||BC\\BC\subset\left(SBC\right)\end{cases}}\Rightarrow AD||\left(SBC\right)\)

\(\Rightarrow d\left(AD,SB\right)=d\left(AD,SBC\right)=d\left(J,SBC\right)\)

Ta thấy: SI là giao tuyến của (SIJ) và (SBC), mà \(\hept{\begin{cases}J\in\left(SIJ\right)\\JH\perp SI\end{cases}\left(H\in SI\right)}\)nên \(JH\perp\left(SBC\right)\)

Ta có \(SO=a\sqrt{3},OI=a\frac{\sqrt{2}}{2}\Rightarrow\cos\widehat{OSI}=\frac{SO}{\sqrt{SO^2+OI^2}}=\frac{\sqrt{42}}{7}\)

Suy ra \(d\left(J,SBC\right)=JH=IJ.\cos\widehat{HJI}=IJ.\cos\widehat{OSI}=\frac{\sqrt{42}a}{7}\)

Vậy \(d\left(AD,SB\right)=\frac{\sqrt{42}a}{7}.\)

22 tháng 6 2021

Chữa câu c:

\(d\left(AD,SB\right)=JH=IJ.\cos\widehat{HJI}=a\sqrt{2}.\frac{\sqrt{42}}{7}=\frac{2\sqrt{21}a}{7}\)

NV
21 tháng 4 2021

Do S.ABCD là chóp đều \(\Rightarrow BD\perp\left(SAC\right)\)

Mà BD là giao tuyến (MBD) và (ABCD)

\(\Rightarrow\widehat{MOC}\) là góc giữa (MBD) và (ABCD)

\(OC=\dfrac{AC}{2}=\dfrac{a\sqrt{2}}{2}\) ; \(MC=OM=\dfrac{1}{2}SC=\dfrac{a}{2}\)

Áp dụng định lý hàm cosin:

\(cos\widehat{MOC}=\dfrac{OM^2+OC^2-CM^2}{2OM.OC}=\dfrac{\sqrt{2}}{2}\)

\(\Rightarrow\widehat{MOC}=45^0\)

a: (SAB) vuông góc (ABCD)

(SAB) giao (ABCD)=AB

SI vuông góc AB

=>SI vuông góc (ABCD)

b: CD vuông góc SI

CD vuông góc IK

=>CD vuông góc (SIK)

=>(SCD) vuông góc (SIK)