Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
SA=SC
OA=OC
=>SO là trung trực của AC
=>SO vuông góc AC(1)
SB=SD
OB=OD
=>SO là trung trực của BD
=>SO vuông góc BD(2)
Từ (1), (2) suy ra SO vuông góc (ABCD)
=>SO vuông góc CB
\(SA=SB=AB\Rightarrow\Delta SAB\) đều
Do SA=SB=SC=SD \(\Rightarrow SO\perp\left(ABCD\right)\)
\(AB||CD\Rightarrow\left(SA;CD\right)=\left(SA;AB\right)=\widehat{SAB}=60^0\)
b.
\(SO\perp\left(ABCD\right)\Rightarrow SO\perp BC\Rightarrow\left(SO;BC\right)=90^0\)
c.
Ta có OM là đường trung bình tam giác SBD \(\Rightarrow OM||SD\)
\(\Rightarrow\left(SD;CM\right)=\left(OM;CM\right)=\widehat{OMC}\)
\(OM=\dfrac{1}{2}SD=a\) ; \(OC=\dfrac{1}{2}AC=\dfrac{1}{2}\sqrt{AB^2+AD^2}=\dfrac{a\sqrt{5}}{2}\)
\(cos\widehat{SBC}=\dfrac{1}{4}\Rightarrow CM=\sqrt{BM^2+BC^2-2BM.BC.cos\widehat{SBC}}=\dfrac{a\sqrt{6}}{2}\)
\(cos\widehat{OMC}=\dfrac{OM^2+CM^2-OC^2}{2OM.CM}=\dfrac{5\sqrt{6}}{24}\)
\(\Rightarrow\widehat{OMC}\simeq59^0\)
Đề bài thiếu dữ liệu định vị điểm S (ví dụ SC bằng bao nhiêu đó) nên ko thể tính góc giữa SB và (ABCD)
a: Xét ΔBAC có BA=BC và góc ABC=60 độ
nên ΔABC đều
=>\(S_{ABC}=\dfrac{a^2\sqrt{3}}{4}\)
=>\(S_{ABCD}=\dfrac{a^2\sqrt{3}}{2}\)
A B C D S O I J H
a) Hình chóp đều S.ABCD có O là tâm đáy, suy ra \(SO\perp\left(ABCD\right)\Rightarrow CB\perp SO\)
Hình vuông ABCD có I,J lần lượt là trung điểm BC,AD, suy ra \(CB\perp IJ\)
Vậy \(CB\perp\left(SIJ\right)\)hay \(\left(SBC\right)\perp\left(SIJ\right).\)
b) Ta có: \(OC=\frac{CD}{\sqrt{2}}=a;SC=2a\Rightarrow\frac{OC}{SC}=\frac{1}{2}\)
\(\hept{\begin{cases}SO\perp\left(ABCD\right)\\C\in\left(ABCD\right)\end{cases}}\Rightarrow\left(SC,ABCD\right)=\widehat{SCO}=arc\cos\left(\frac{OC}{SC}\right)=60^0\)(Vì \(\widehat{SCO}< 90^0\))
b) Lấy H thuộc SI sao cho JH vuông góc SI
\(\hept{\begin{cases}AD||BC\\BC\subset\left(SBC\right)\end{cases}}\Rightarrow AD||\left(SBC\right)\)
\(\Rightarrow d\left(AD,SB\right)=d\left(AD,SBC\right)=d\left(J,SBC\right)\)
Ta thấy: SI là giao tuyến của (SIJ) và (SBC), mà \(\hept{\begin{cases}J\in\left(SIJ\right)\\JH\perp SI\end{cases}\left(H\in SI\right)}\)nên \(JH\perp\left(SBC\right)\)
Ta có \(SO=a\sqrt{3},OI=a\frac{\sqrt{2}}{2}\Rightarrow\cos\widehat{OSI}=\frac{SO}{\sqrt{SO^2+OI^2}}=\frac{\sqrt{42}}{7}\)
Suy ra \(d\left(J,SBC\right)=JH=IJ.\cos\widehat{HJI}=IJ.\cos\widehat{OSI}=\frac{\sqrt{42}a}{7}\)
Vậy \(d\left(AD,SB\right)=\frac{\sqrt{42}a}{7}.\)
Chữa câu c:
\(d\left(AD,SB\right)=JH=IJ.\cos\widehat{HJI}=a\sqrt{2}.\frac{\sqrt{42}}{7}=\frac{2\sqrt{21}a}{7}\)
Do S.ABCD là chóp đều \(\Rightarrow BD\perp\left(SAC\right)\)
Mà BD là giao tuyến (MBD) và (ABCD)
\(\Rightarrow\widehat{MOC}\) là góc giữa (MBD) và (ABCD)
\(OC=\dfrac{AC}{2}=\dfrac{a\sqrt{2}}{2}\) ; \(MC=OM=\dfrac{1}{2}SC=\dfrac{a}{2}\)
Áp dụng định lý hàm cosin:
\(cos\widehat{MOC}=\dfrac{OM^2+OC^2-CM^2}{2OM.OC}=\dfrac{\sqrt{2}}{2}\)
\(\Rightarrow\widehat{MOC}=45^0\)
a: (SAB) vuông góc (ABCD)
(SAB) giao (ABCD)=AB
SI vuông góc AB
=>SI vuông góc (ABCD)
b: CD vuông góc SI
CD vuông góc IK
=>CD vuông góc (SIK)
=>(SCD) vuông góc (SIK)
\(AD//BC\)nên \(\left(SBC\right)//AD\).
\(d\left(AD,SC\right)=d\left(AD,\left(SBC\right)\right)=d\left(A,\left(SBC\right)\right)\)
Đặt \(AB=BC=CD=DA=a\).
\(\widehat{SBA}=45^o\Rightarrow SA=a\).
Kẻ \(AH\perp SB\).
\(AH=\frac{a\sqrt{2}}{2}\).
\(d\left(AD,SC\right)=d\left(AD,\left(SBC\right)\right)=d\left(A,\left(SBC\right)\right)=AH=\frac{a\sqrt{2}}{2}\).