Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c.
Từ M kẻ \(MH\perp SC\) (H thuộc SC)
\(\Rightarrow H\in\left(\alpha\right)\Rightarrow\) thiết diện là tam giác BMH
Do \(\left\{{}\begin{matrix}BM\perp\left(SAC\right)\\MH\in\left(SAC\right)\end{matrix}\right.\) \(\Rightarrow BM\perp MH\Rightarrow\Delta BMH\) vuông tại M
Trong tam giác vuông ABC: \(BM=\dfrac{1}{2}AC=a\) (trung tuyến ứng với cạnh huyền)
Hai tam giác vuông CHM và CAS đồng dạng (chung góc C)
\(\Rightarrow\dfrac{MH}{SA}=\dfrac{CM}{SC}\Rightarrow MH=\dfrac{SA.CM}{SC}=\dfrac{SA.\dfrac{AC}{2}}{\sqrt{SA^2+AC^2}}=\dfrac{a\sqrt{5}}{5}\)
\(\Rightarrow S_{BMH}=\dfrac{1}{2}BM.MH=\dfrac{a^2\sqrt{5}}{10}\)
Chọn A.
- Trong (SAB), từ M kẻ đường thẳng vuông góc với SB tại Q.
- Trong (SBC) từ Q kẻ đường thẳng vuông góc với SB cắt SC tại P.
- Do đó BC// QP, trong (ABC) từ M kẻ đường thẳng song song với BC cắt AC tại N.
- Xét tứ giác MNPQ, ta có BC // QP nên tứ giác là là hình thang.
- Mặt khác:
nên tứ giác MNPQ là hình thang vuông.
a: BC vuông góc AM
BC vuông góc SA
=>BC vuông góc (SAM)
b: BC vuông góc (SAM)
=>BC vuông góc SM
=>(SM;(ABC))=90 độ