K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2021

 \(S=5+5^2+5^3+5^4+...+5^{57}\)

\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{55}+5^{56}+5^{57}\right)\)

\(=5\left(1+5+5^2\right)+5^4\left(5+1+5^2\right)+...+5^{55}\left(1+5+5^2\right)\)

\(=5.31+5^4.31+...+5^{55}.31\)

\(=31\left(5+5^4+...+5^{55}\right)⋮31\)

Vậy:.............

1 tháng 1 2016

S=( 5+5^2+5^3)+....+(5^2011+5^2012+5^2013). Nhóm 3 số 1 bộ

S=5(1+5+5^2)+.....+5^2011(1+5+5^2)

S=5.31+.....+5^2011.31

S=31(5+....+5^2011) chia hết cho 31(đpcm)

Tick nhé.

Tiện thể cho mình hỏi cách viết số mũ lên cao thế nào vậy

1 tháng 1 2016

ĐỀ CÓ SAI K !? 
CÓ THÌ SỬA 
K THÌ MÌNH NGHĨ CHO

 

3 tháng 4 2016

nhóm 4 số liên tiếp lại với nhau(vì 2012 chia hết cho4) ta có

\(\left(5+5^2+5^3+5^4\right)+\left(5^5+5^6+5^7+5^8\right)+...+\left(5^{2009}+5^{2010}+5^{2011}+5^{2012}\right)\)

\(=780+5^4.780+...+5^{2008}.780\)

\(=780\left(1+5^4+...+5^{2008}\right)\)

Vì 780 chia hết cho 65

=>\(=780\left(1+5^4+...+5^{2008}\right)\) chia hết cho 65

hay S chia hết cho 65

15 tháng 1 2017

S=5+52+53+54+...+52016

=(5+52+53)+(54+55+56)+...+(52014+52015+52016)

=5(1+5+52)+54(1+5+52)+...+52014(1+5+52)

=5.31+54.31+...+52014.31

=31(5+54+...+52014)

Vì 31\(⋮\)31 nên 31(5+54+...+52014)

Vậy S \(⋮\) 31

15 tháng 1 2017

S = 5 + 5 ^ 2 + 5 ^ 3 + 5 ^ 4 + .... + 5 ^ 2016 ( co 2016 số hạng )

S = ( 5 + 5 ^ 2 + 5 ^ 3 ) + ( 5 ^ 4 + 5 ^ 5 + 5 ^ 6) + ..... + ( 5 ^ 2014 + 5 ^ 2015 + 5 ^ 2016 )  Co 2016 : 3 = 672 nhom

S = 5 x ( 1 + 5 + 5 ^ 2 ) + 5 ^ 4 x (  1 + 5 + 5 ^ 2 ) +...... + 5 ^ 2014 x ( 1  + 5 + 5 ^ 2 )

S = 5 x 31 + 45 ^ 4 x 31 + ... + 5 ^ 2014 x 31

S = ( 5 + 5 ^ 4 + .... + 5 ^ 2014 ) x 31

VÌ 31 chia hết cho 31 nên ( 5 + 5 ^ 4 +.... + 5 ^ 2014 ) x 31 chia hết cho 31, hay B chia hết cho 31

6 tháng 3 2018

Bạn ơi hình như đề bị sai ở chỗ nào đó, bạn thử xem lại đi. Mình nghĩ chắc là S chia hết cho 30.

23 tháng 12 2018

S=1+51+52+53+...+559

S=(1+51+52)+(53+54+55)+....+(557+558+559)

S=31+53.(1+5+52)+....+557.(1+5+52)

S=31+53.31+...+557.31

S=31.(1+53+...+557)

vì 31 chia hết cho 31 nên S chia hết cho 31

vậy S chia hết cho 31

29 tháng 10 2018

B ko chia hết cho 7 nha.

8 tháng 8 2017

S=5+52+53+....+52004

 =(5+53)+(52+54)+.....+(52002+52004)

=5(1+52)+52(1+52)+.........+52002(1+52)

=5.26+52.26+........+52002.26

=26.(5+52+............+52002) chia hết cho 26

Vậy S chia hết cho 26.

=

8 tháng 8 2017

\(S=5+5^2+5^3+...+5^{2004}\)

\(S=\left(5+5^2+5^3+5^4\right)+\left(5^5+5^6+5^7+5^8\right)+...+\left(5^{2001}+5^{2002}+5^{2003}+5^{2004}\right)\)

\(S=780+5^4.\left(5+5^2+5^3+5^4\right)+...+5^{2000}.\left(5+5^2+5^3+5^4\right)\)

\(S=780+5^4.780+...+5^{2000}.780\)

\(S=780.\left(1+5^4+...+5^{2000}\right)\)

Ta có \(S=5+5^2+5^3+...+5^{2004}\) \(⋮\) \(780\)

Phân tích: \(780=26.30\)

Tức \(S=5+5^2+5^3+...+5^{2004}\)  chia hết cho 26 và 30

Vậy \(S=5+5^2+5^3+...+5^{2004}\)  chia hết cho 26

29 tháng 10 2017

1/5 S = 1+5+5^2+...+5^2012

         =1(1+5+5^2)+5^3(1+5+5^2)+...+5^2010(1+5+5^2)

        mà 1+5+5^2=31=>1+5+5^2 chia hết 31

        => mổi số hạng của 1/5 S chia hết 31

       => S chia hết 31

Học chuyên đó ak. bài zễ thế nài mà ko bt làm ntn hả

18 tháng 11 2017

ta có : S=5+5^2+5^3+5^4+......+5^2013  ( có 2013 số hạng )

           S=(5+5^2+5^3)+(5^4+5^5+5^6)+.............+(5^2011+5^2012+5^2013)   ( có 671 nhóm)

           S= 5.(1+5+5^2)+5^2.(1+5+5^2)+........+5^2011.(1+5+5^2)

           S=(5+5^2+.....+5^2011).31

            S chia hết cho 31