Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=5+52+53+54+...+52016
=(5+52+53)+(54+55+56)+...+(52014+52015+52016)
=5(1+5+52)+54(1+5+52)+...+52014(1+5+52)
=5.31+54.31+...+52014.31
=31(5+54+...+52014)
Vì 31\(⋮\)31 nên 31(5+54+...+52014)
Vậy S \(⋮\) 31
S = 5 + 5 ^ 2 + 5 ^ 3 + 5 ^ 4 + .... + 5 ^ 2016 ( co 2016 số hạng )
S = ( 5 + 5 ^ 2 + 5 ^ 3 ) + ( 5 ^ 4 + 5 ^ 5 + 5 ^ 6) + ..... + ( 5 ^ 2014 + 5 ^ 2015 + 5 ^ 2016 ) Co 2016 : 3 = 672 nhom
S = 5 x ( 1 + 5 + 5 ^ 2 ) + 5 ^ 4 x ( 1 + 5 + 5 ^ 2 ) +...... + 5 ^ 2014 x ( 1 + 5 + 5 ^ 2 )
S = 5 x 31 + 45 ^ 4 x 31 + ... + 5 ^ 2014 x 31
S = ( 5 + 5 ^ 4 + .... + 5 ^ 2014 ) x 31
VÌ 31 chia hết cho 31 nên ( 5 + 5 ^ 4 +.... + 5 ^ 2014 ) x 31 chia hết cho 31, hay B chia hết cho 31
1/5 S = 1+5+5^2+...+5^2012
=1(1+5+5^2)+5^3(1+5+5^2)+...+5^2010(1+5+5^2)
mà 1+5+5^2=31=>1+5+5^2 chia hết 31
=> mổi số hạng của 1/5 S chia hết 31
=> S chia hết 31
Học chuyên đó ak. bài zễ thế nài mà ko bt làm ntn hả
ta có : S=5+5^2+5^3+5^4+......+5^2013 ( có 2013 số hạng )
S=(5+5^2+5^3)+(5^4+5^5+5^6)+.............+(5^2011+5^2012+5^2013) ( có 671 nhóm)
S= 5.(1+5+5^2)+5^2.(1+5+5^2)+........+5^2011.(1+5+5^2)
S=(5+5^2+.....+5^2011).31
S chia hết cho 31
+) C=5+52+53+54+....+52010
<=> C=(5+52)+(53+54)+.....+(52009+52010)
<=> C=5(1+5)+53(1+5)+....+52009(1+5)
<=> C=5 x 6 +53 x 6+....+52009 x 6
<=> C=6(5+53+....+52009)
=> C chia hết cho 6 (đpcm)
+) C=5+52+53+54+....+52010
<=> C=(5+52+53)+(54+55+56)+....+(52008+52009+52010)
<=> C=5(1+5+25)+54(1+5+25)+....+52008(1+5+25)
<=> C=5 x 31+54x31 +....+52008 x 31
<=> C=31(5+54+....+52008)
=> C chia hết cho 31 (đpcm)
+) D=7+72+73+74+....+72010
<=> D=(7+72)+(73+74)+....+(72009+72010)
<=> D=7(1+7)+73(1+7)+....+72009(1+7)
<=> D=7 x 8 +73 x 8 +....+72009 x 8
<=> D=8(7+73+....+72009)
+) D=7+72+73+74+....+72010
<=> D=(7+72+73)+(74+75+76)+....+(72008+72009+72010)
<=> D=7(1+7+49)+74(1+7+49)+....+72008(1+7+49)
<=> D=7 x 57 +74 x 57+....+72008 x 57
<=> D=57(7+74+...+72008)
=> D chia hết cho 57 (đpcm)
- cho S = 5+ 5^2 + 5^3 + 5^4+ 5^5+.......+5^2004
- chứng minh S chia hết cho 30 và chia hết cho 126.
S = 5+52+53+54+....+52004
S = (5+52)+(53+54)+...+(52003+52004)
S = 1(5+52)+52(5+52)+.....+52002(5+52)
S = 1.30 + 52.30 +.....+52002.30
S = 30.(1+52+....+52002) chia hết cho 30
=> S chia hết cho 30 (Đpcm)
*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)
\(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)
\(=6\times\left(2^2+2^3+...+2^{2008}\right)\)
\(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)
\(\Rightarrow A⋮3\)
*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(\Rightarrow A⋮7\)
Mình sửa lại đề C 1 chút xíu
*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)
\(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)
\(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(\Rightarrow C⋮4\)
Các câu khác làm tương tự nhé. Chúc bạn học tốt!
\(S=5+5^2+5^3+5^4+...+5^{57}\)
\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{55}+5^{56}+5^{57}\right)\)
\(=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{55}\left(1+5+5^2\right)\)
\(=5.31+5^4.31+...+5^{55}.31\)
\(=31\left(5+5^4+..+5^{55}\right)⋮31\)
Vậy:..