Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4S = 4 + 42 + 43 + 44 + ... + 4120
4S - S = 4120 - 1
3S = 4120 - 1
3S + 1 = 4120 - 1 + 1
Vì 43 = 64 < 34 = 81\(\hept{\begin{cases}3S+1=4^{120}=\left(4^3\right)^{40}\\B=3^{160}=\left(3^4\right)^{40}\end{cases}}\)
\(\Rightarrow\left(4^3\right)^{40}< \left(3^4\right)^{40}\)
\(\Rightarrow3S+1< B\)
Vậy \(3S+1< B\)
Chúc bạn học tốt !!!
Ta có: \(64^{12}=\left(4^3\right)^{12}=4^{36}\)
\(S=4^0+4^1+...+4^{34}+4^{35}\)
\(\Rightarrow4S=4^1+4^2+...+4^{35}+4^{36}\)
\(\Rightarrow4S-S=4^{36}-4^0\)
\(\Rightarrow3S=4^{36}-1< 4^{36}\)
Vậy \(3S< 64^{12}\)
tổng \(\frac{4^{21}-4}{3}\)đó là tổng S nhá ta có :\(4^{21}=4^{19}.4^3\)-4+4 vậy 17 . 4^19 lớn nơn
Dễ thấy:64^{12}=\left(4^3\right)^{12}=4^{3.12}=4^{36}6412=(43)12=43.12=436
Ta có: 4S=4\left(4^0+4^1+4^2+4^3+...+4^{35}\right)4(40+41+42+43+...+435)
=4^1+4^2+4^3+4^4+...+4^{36}=41+42+43+44+...+436
=>4S-S=4^{36}-4^0436−40
Hay 3S=4^{36}-1< 4^{36}=64^{12}436−1<436=6412
Vậy 3S<64^{12}6412
Ta có
S=40+41+42+...+434+435
=>4S=41+42+43+...+435+436
=> 4S-S=(40+41+42+...+434+435)- (41+42+43+...+435+436)
=> 3S=436-40=436-1=6412-1
=> 3S<6412
\(S=1+4^2+4^3+...+4^{99}\)
\(\Rightarrow S+4=1+4+4^2+4^3+...+4^{99}\)
\(\Rightarrow S+4=\dfrac{4^{99+1}-1}{4-1}=\dfrac{4^{100}-1}{3}\)
\(\Rightarrow S=\dfrac{4^{100}-1}{3}-4=\dfrac{4^{100}-13}{3}\)
\(\Rightarrow3S+1=3.\dfrac{4^{100}-13}{3}+1\)
\(\Rightarrow3S+1=4^{100}-12\)
\(\Rightarrow3S+1=2^{200}-2^2.3>2^{100}\)
mà \(32^{20}=\left(2^5\right)^{20}=2^{100}\)
\(\Rightarrow3S+1>32^{20}\)