Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có
A = \(\dfrac{1}{10}\) + \((\dfrac{1}{11}\) + \(\dfrac{1}{12}\) + ...+ \(\dfrac{1}{100}\)\()\)
⇒ A > \(\dfrac{1}{10}\) + \((\dfrac{1}{100}\) + \(\dfrac{1}{100}\) + ...+ \(\dfrac{1}{100}\)\()\)90 số hạng
⇒ A > \(\dfrac{1}{10}\) + \(\dfrac{90}{100}\)
⇒ A > 1
vậy A > 1
b: ta có
S = (\(\dfrac{1}{21}\) + \(\dfrac{1}{22}\)+ \(\dfrac{1}{23}\) + \(\dfrac{1}{24}\) + \(\dfrac{1}{25}\))+(\(\dfrac{1}{26}\) + \(\dfrac{1}{27}\)+ \(\dfrac{1}{28}\) + \(\dfrac{1}{29}\) + \(\dfrac{1}{30}\))+(\(\dfrac{1}{31}\) + \(\dfrac{1}{32}\)+ \(\dfrac{1}{33}\) + \(\dfrac{1}{34}\) + \(\dfrac{1}{35}\))
⇒ S > (\(\dfrac{1}{25}\) + \(\dfrac{1}{25}\)+ \(\dfrac{1}{25}\) + \(\dfrac{1}{25}\) + \(\dfrac{1}{25}\))+(\(\dfrac{1}{30}\) + \(\dfrac{1}{30}\)+ \(\dfrac{1}{30}\) + \(\dfrac{1}{30}\) + \(\dfrac{1}{30}\))+(\(\dfrac{1}{35}\) + \(\dfrac{1}{35}\)+ \(\dfrac{1}{35}\) + \(\dfrac{1}{35}\) + \(\dfrac{1}{35}\))
⇔ S > \(\dfrac{5}{25}\)+\(\dfrac{5}{30}\)+\(\dfrac{5}{35}\)
⇔ S > \(\dfrac{1}{5}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{7}\)
⇔ S > \(\dfrac{107}{210}\)> \(\dfrac{105}{210}\)=\(\dfrac{1}{2}\)
vậy S > \(\dfrac{1}{2}\)
Ta có : \(S=\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+...+\frac{1}{199}+\frac{1}{200}\)
\(\Rightarrow S>\frac{1}{200}+\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\) ( 181 phân số )
\(\Rightarrow S>\frac{181}{200}>\frac{180}{200}=\frac{9}{10}\)
\(\Rightarrow S>\frac{9}{10}\) \(\Rightarrowđpcm\)
C = 120120 + 121121 + 122122 + ... + 12001200
⇒ CC> 12001200 + 12001200 + 12001200 + ...... + 12001200 ( 181181 phân số )
⇒ CC > 181200181200 > 180200180200 = 910910
⇒ CC >910
S = \(\frac{1}{20}+\frac{1}{21}...+\frac{1}{199}+\frac{1}{200}\) ( có 181 phân số )
=> S > \(\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}+\frac{1}{200}\)
=> S > \(\frac{1}{200}.181\)
=> S > \(\frac{181}{200}\)> \(\frac{180}{200}\)= \(\frac{9}{10}\)
Vậy S > 9 / 10
\(S=\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{10^2}\)
\(S>\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{10.11}\)
\(S>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-....-\frac{1}{11}\)
\(S>\frac{1}{2}-\frac{1}{11}=\frac{11}{22}-\frac{2}{22}=\frac{9}{22}\)
Vậy S > 9/22
Bấm máy tính ra xấp xỉ 0,55 thì lớn hơn 0,5 chứ sao.Mình chỉ cm được lớn hơn 3 phần 7 thôi, mà 1 phần 2 bằng 3,5 phần 7
do \(\frac{5}{20}< 1;\frac{5}{21}< 1;\frac{5}{22}< 1;\frac{5}{23}< 1;\frac{5}{24}< 1\)
\(\Rightarrow\frac{5}{20}+\frac{5}{21}+\frac{5}{22}+\frac{5}{23}+\frac{5}{24}< 1\)
Vậy S < 1
Mk nghĩ thế bn ạ
Ai thấy tớ đúng ủng hộ nha
`Answer:`
\(S=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{31}+\frac{1}{32}\)
a) Ta thấy:
\(\frac{1}{3}+\frac{1}{4}>\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\)
\(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}>\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{1}{2}\)
\(\frac{1}{9}+...+\frac{1}{16}>8.\frac{1}{16}=\frac{1}{2}\)
\(\frac{1}{17}+\frac{1}{18}+...+\frac{1}{32}>16.\frac{1}{32}=\frac{1}{2}\)
\(\Rightarrow S>\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{5}{2}\)
b) Ta thấy:
\(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}< 3.\frac{1}{3}\)
\(\frac{1}{6}+...+\frac{1}{11}< 6.\frac{1}{6}\)
\(\frac{1}{12}+...+\frac{1}{23}< 12.\frac{1}{12}\)
\(\frac{1}{24}+...+\frac{1}{32}< 9.\frac{1}{24}\)
\(\Rightarrow S< \frac{1}{2}+1+1+1+\frac{9}{24}=\frac{31}{8}< \frac{9}{2}\)
Easy!!
\(S=\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{35}>\dfrac{1}{29}+\dfrac{1}{29}+...+\dfrac{1}{29}\) (15 phân số \(\dfrac{1}{29}\))
\(=\dfrac{1.15}{29}=\dfrac{15}{29}>\dfrac{1}{2}\) (*)
\(\Rightarrow\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{35}>\dfrac{1}{2}^{\left(đpcm\right)}\)
P/s: đpcm là điều phải chứng minh
Có \(S=\dfrac{1}{21}+\dfrac{1}{22}+......+\dfrac{1}{35}\)
\(S=\dfrac{1}{21}+\dfrac{1}{22}+.........+\dfrac{1}{35}>\dfrac{1}{29}+\dfrac{1}{29}+\dfrac{1}{29}+........+\dfrac{1}{29}\)( 15 phân số \(\dfrac{1}{29}\))
\(S=\dfrac{15}{29}>\dfrac{1}{2}\)
\(S>\dfrac{1}{2}\)
Vậy S > \(\dfrac{1}{2}\)(đpcm)