K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 3 2020

Để pt có 1 nghiệm \(x=-2\)

\(\Rightarrow-8+4-2m-4=0\Rightarrow m=-4\)

b/ Khi \(m=-4\)

\(\Leftrightarrow x^3+x^2-4x-4=0\)

\(\Leftrightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-1\\x=2\end{matrix}\right.\)

30 tháng 11 2022

Bài 3:

a: Để pt có hai nghiệm trái dấu thì m+5<0

=>m<-5

b: \(\text{Δ}=\left(m+2\right)^2-4\left(m+5\right)\)

\(=m^2+4m+4-4m-20=m^2-16\)

Để phương trình có hai nghiệm phân biệt thì m^2-16>0

=>m>4 hoặc m<-4

c: x1^2+x2^2=23

=>(x1+x2)^2-2x1x2=23

=>(m+2)^2-2(m+5)=23

=>m^2+4m+4-2m-10-23=0

=>m^2+2m-29=0

hay \(m=-1\pm\sqrt{30}\)

d: Để pt có hai nghiệm âm phân biệt thì

\(\left\{{}\begin{matrix}m\in R\backslash\left[-4;4\right]\\m+2< 0\\m+5>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in R\backslash\left[-4;4\right]\\-5< m< -2\end{matrix}\right.\Leftrightarrow m\in[-4;-2)\)

\(\text{Δ}=\left(2m-2\right)^2-4\left(m^2-3m\right)\)

\(=4m^2-8m+4-4m^2+12m=4m+4\)

Để phương trình có nghiệm thì 4m+4>=0

hay m>=-1

29 tháng 11 2019
https://i.imgur.com/DsuSfIq.jpg
29 tháng 11 2019
https://i.imgur.com/LOVvDRi.jpg

Bài 2: 

a: \(\text{Δ}=\left(4m+2\right)^2-4\left(4m+3\right)\)

\(=16m^2+16m+4-16m-12=16m^2-8\)

Để phương trình có hai nghiệm thì \(2m^2>=1\)

=>\(\left[{}\begin{matrix}m>=\dfrac{1}{\sqrt{2}}\\m< =-\dfrac{1}{\sqrt{2}}\end{matrix}\right.\)

c: \(A=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\)

\(=\left(4m+2\right)^3-3\cdot\left(4m+3\right)\left(4m+2\right)\)

\(=64m^3+96m^2+48m+8-3\left(16m^2+20m+6\right)\)

\(=64m^3+96m^2+48m+8-48m^2-60m-18\)

\(=64m^3+48m^2-12m-10\)

NV
20 tháng 11 2018

\(\left\{{}\begin{matrix}m\ne0\\\Delta'>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne0\\m< 1\end{matrix}\right.\)

Khi đó \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m+2}{m}\\x_1x_2=\dfrac{m+3}{m}\end{matrix}\right.\)

\(x_1^3+x_2^3-2\left(x_1+x_2\right)=0\Leftrightarrow\left(x_1+x_2\right)\left(\left(x_1+x_2\right)^2-3x_1x_2\right)-2\left(x_1+x_2\right)=0\)

\(\Leftrightarrow\left(x_1+x_2\right)\left(\left(x_1+x_2\right)^2-3x_1x_2-2\right)=0\)

TH1: \(x_1+x_2=0\Leftrightarrow\dfrac{2\left(m+1\right)}{m}=0\Rightarrow m=-1\)

TH2: \(\left(x_1+x_2\right)^2-3x_1x_2-2=0\Leftrightarrow\left(\dfrac{2m+2}{m}\right)^2-\dfrac{3m+9}{m}-2=0\)

\(\Leftrightarrow m^2+m-4=0\Rightarrow\left[{}\begin{matrix}m=\dfrac{-1-\sqrt{17}}{2}\\m=\dfrac{-1+\sqrt{17}}{2}\left(l\right)\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}m=-1\\m=\dfrac{-1-\sqrt{17}}{2}\end{matrix}\right.\)

2 tháng 2 2020

1,

a, với m=1 , phương trình có nghiệm x=\(\frac{1}{2}\)

với m\(\ne1\) , \(_{\Delta}\)=m

- nếu m< 0 : pt vô nghiệm

-nếu m=0: pt có 1 nghiệm kép x=1

-nếu m>0( và m\(\ne\)1) : pt có 2 nghiệm

\(x_1=\frac{-1-\sqrt{m}}{m-1}\)\(x_2=\frac{-1+\sqrt{m}}{m-1}\)

b, pt có 2 nghiệm trái dấu nếu

m-1\(\ne\)0 và \(\frac{-1}{m-1}\)<0 \(\Leftrightarrow\)m>1

c, \(m\ne1\) và m>0, pt có 2 nghiệm x1 và x2

1=x12 +x22=(x1+x2)2-2x1x2=\(\left(\frac{2}{m-1}\right)^2+\frac{2}{m-1}\Rightarrow m=2+\sqrt{5}\)

2 tháng 2 2020

2,

giả sử 2 pt đều có nghiệm thì phải có:

\(\Delta_1=1-4a\ge0\)\(\Delta_2=a^2-4\ge0\Leftrightarrow a\le-2\)

giả sử k là 1 nghiệm chung thì ta phải có:

k2+k+a=k2+ka+1

\(\Rightarrow\) k(a-1)=a-1 \(\Rightarrow\)k=1 (vì \(a\le-2\) nên a-1\(\ne\)0)

thay k=1 vào 1 pt ta tính được a=-2

thử lại: a=-2 vào các pt ta thấy dúng là 2 pt có nghiệm chung là x=1