K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2015

1) \(\Delta=m^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\ge0\)với mọi m=> pt luôn có nghiệm với mọi m

a) áp dụng hệ thức vi ét ta có: \(x1+x2=-m\)\(x1.x2=m-1\)

 \(B=x1^2+x2^2-4\left(x1+x2\right)=\left(x1+x2\right)^2-2x1x2-4\left(x1+x2\right)=m^2-2\left(m-1\right)-4\left(-m\right)=m^2+2m-2\)

\(=\left(m^2+2m+1\right)-3=\left(m+1\right)^2-3\ge-3\Rightarrow MinB=-3\Leftrightarrow m=-1\)

2) \(2x^2+2x+3x+3=0\Leftrightarrow\left(x+1\right)\left(2x+3\right)=0\Rightarrow\)x1=-1 và x2=-3/2

tổng 2 nghiệm \(x1^2+1+x2^2+1=1^2+1+\left(-\frac{3}{2}\right)^2+1=\frac{21}{4}\)

tích 2 nghiệm \(=\left(1^2+1\right)\left(\frac{3}{2}^2+1\right)=\frac{13}{2}\)=> PT cần tìm: \(x^2-\frac{21}{4}x+\frac{13}{2}=0\)

 

25 tháng 5 2016

Bảo Ngọc tính nghiệm bị sai!

25 tháng 5 2016

a) Ta xét : 

\(\Delta'=\left(m-2\right)^2+2m=m^2-2m+4=\left(m-1\right)^2+3\ge3>0\)

Vì \(\Delta'>0\)nên phương trình trên luôn có hai nghiệm phân biệt.

b) Dễ thấy : x1<x2 nên ta có : 

\(x_1=\frac{2\left(m-2\right)-\sqrt{\left(m-1\right)^2+3}}{2}=m-2-\sqrt{\left(m-1\right)^2+3}\) ; \(x_2=\frac{2\left(m-2\right)+\sqrt{\left(m-1\right)^2+3}}{2}=m-2+\sqrt{\left(m-1\right)^2+3}\)

\(x_2-x_1=x_1^2\Leftrightarrow2\sqrt{\left(m-1\right)^2+3}=\left(m-2-\sqrt{\left(m-1\right)^2+3}\right)^2\)

\(\Leftrightarrow\left(m-2\right)^2+\left(m-1\right)^2+3-2\left(m-2\right)\sqrt{\left(m-1\right)^2+3}=2\sqrt{\left(m-1\right)^2+3}\)

\(\Leftrightarrow m=2\)

Vậy m = 2

8 tháng 6 2016

PT có 2 no dương \(\Leftrightarrow\hept{\begin{cases}\Delta\ge0\\x1.x2>0\\x1+x2>0\end{cases}}\) .... tự giải đoạn này nhé bạn
sau đó viet thay vào Q giải bình thường 

15 tháng 6 2015

1, thay m=-2 vào giải chắc bạn làm đc nếu k liên hệ mình giải cho

b, giải sử pt có 2 nghiệm pb, áp dụng hệ thức vi ét ta có: \(x1+x2=2m+2\)\(x1.x2=m-2\Leftrightarrow2.x1.x2=2m-4\)

=> \(x1+x2-2.x1.x2=2m+2-2m+4=6\)=> hệ thức liên hệ k phụ thuộc vào m

2) \(\Delta=4\left(m-3\right)^2+4>0\) với mọi m=> pt luôn có 2 nghiệm pb

áp dụng hệ thức vi ét ta có: \(x1+x2=2m-6\)\(x1.x2=-1\)

câu này bạn xem có sai đề k. loại bài toán áp dụng hệ thức vi ét này k bao giờ có đề là x1-x2 đâu nha

sửa đề rồi liên hệ để mình làm tiếp nha

 

10 tháng 3 2018

a)cho m=0 =>x tự làm theo ct nhe 
B) pt co 2 n <=> delta=1-(m-1)>0 <=>m<2 
c)viet x1^2+x2^2=(x1+x2)^2-2x1x2 
=2^2-2(m-1)=10 =>m=-2

10 tháng 3 2018

yheem đap an đi

24 tháng 5 2016

Cho phương trình: X2 - (2m4+1)x + m2 + m - 1 = 0

a. Giải phương trình khi m=1 khi đó lập một phương trình nhận t1 = x+ xvà t= xxlàm nghiệm.

b. Chứng minh phương trình có nghiệm với mọi m.

c. Tìm m sao cho:

    A=(2x1 - x2)(2x2 - x1) đạt GTNN, thín GTNN đó (giá trị nhỏ nhất). 

chịu @_@

24 tháng 5 2016

a) thay m=1 vào lập denta giải pt ra đc x1=(3+căn5)/2;x2=(3-căn5)/2

t1=x1+x2=(3+căn5)/2+(3-căn5)/2=3

t2=x1*x2=(3+căn5)/2*(3-căn5)/2=1

=>t1+t2=4;t1*t2=3

=>t1;t2 là nghiệm của pt

T^2-4T+3=0

b) đenta=(2m+1)^2-4(m^2+m-1)=5>0

=>pt luôn luôn có nghiệm với mọi m

c) A=(2x1-x2)(2x2-x1)=5x1x2-2x1^2-2x2^2=5x1x2-2(x1^2+x2^2)=5x1x2-2(x1+x2)^2+4x1x2=9x1x2-2(x1+x2)^2

=9(m^2+m-1)-2(2m+1)^2=9m^2+9m-9-4m-2=9m^2+5m-11>=-421/36 khi x=-5/18

24 tháng 5 2016

Phương trình đúng là 

x- 2(m + 1)x + m2 = 0 

29 tháng 1 2019

giúp vs ạ

29 tháng 1 2019

a, Vì pt trên nhận \(4+\sqrt{2019}\) là nghiệm nên

\(\left(4+\sqrt{2019}\right)^2-\left(2m+2\right)\left(4+\sqrt{2019}\right)+m^2+2m=0\)

\(\Leftrightarrow2035+8\sqrt{2019}-2m\left(4+\sqrt{2019}\right)-8-2\sqrt{2019}+m^2+2m=0\)

\(\Leftrightarrow m^2-2m\left(3+\sqrt{2019}\right)+6\sqrt{2019}+2027=0\)

Có \(\Delta'=\left(3+\sqrt{2019}\right)^2-6\sqrt{2019}-2027=1>0\)

Nên pt có 2 nghiệm \(m=\frac{3+\sqrt{2019}-1}{1}=2+\sqrt{2019}\)

                   hoặc \(m=\frac{3+\sqrt{2019}+1}{1}=4+\sqrt{2019}\)

b, Theo Vi-ét \(\hept{\begin{cases}x_1+x_2=2m+2\left(1\right)\\x_1x_2=m^2+2m\left(2\right)\end{cases}}\)

Theo đề \(x_1-x_2=m^2+2\left(3\right)\)

Lấy (1) + (3) theo từng vế được 

\(2x_1=m^2+2m+5\)

\(\Rightarrow x_1=\frac{m^2+2m+5}{2}\)

\(\Rightarrow x_2=2m+2-x_1=...=-\frac{\left(m-1\right)^2}{2}\)

Thay vào (2) được \(\frac{m^2+2m+5}{2}.\frac{-\left(m-1\right)^2}{2}=m^2+2m\)

                \(\Leftrightarrow-\left(m^2+2m+5\right)\left(m-1\right)^2=4m^2+8m\)

hmmm