Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x^2-\left(3m-2\right)x-\left(3m+1\right)=0\left(1\right)\)\(\left(ĐK:a\ne0\right)\)
Theo phương trình ( 1 ) ta có:
\(\Delta=\left(3m-2\right)^2+4.3.\left(3m+1\right)\)
\(\Delta=9m^2-12m+4+36m+12\)
\(\Delta=9m^2+24m+16\)
\(\Delta=\left(3m\right)^2+2.3.4m+4^2=\left(3m+4\right)^2\)
Phương trình ( 1 ) có 2 nghiệm \(x_1;x_2\Leftrightarrow\Delta=\left(3m+4\right)^2>0\)
Mà \(\left(3m+4\right)^2\ge0\Rightarrow\left(3m+4\right)^2\ne0\)\(\Rightarrow3m\ne-4\Rightarrow m\ne-\frac{4}{3}\)
Ta có: \(x_1+x_2=\frac{3m-2}{3}\left(2\right)\)
\(x_1-x_2=\frac{-3m-1}{3}\left(3\right)\)
\(3x_1-5x_2=6\left(2\right)\)
Từ ( 2 ) và ( 3 ) suy ra \(6x_2=\frac{3m-2}{3}-6\)\(\Rightarrow x_2=\frac{3m-2}{18}-1\)
Rồi làm tương tự với \(x_2\) tiếp tục thay \(x_1,x_2\)và phương trình ( 1 )
\(3x^2-\left(3m-2\right)x-\left(3m+1\right)=0\)
có \(\Delta=\left[-\left(3m-2\right)\right]^2-4.3.\left[-\left(3m+1\right)\right]\)
\(\Delta=9m^2-12m+4+36m+12\)
\(\Delta=9m^2+24m+16\)
\(\Delta=\left(3m+4\right)^2\ge0\forall m\)
vì theo đề bài để pt có 2 nghiệm nên thỏa mãn đk \(\forall m\)
ta có vi - ét \(\hept{\begin{cases}x_1+x_2=\frac{3m-2}{3}\left(1\right)\\x_1.x_2=-\frac{\left(3m+1\right)}{3}\left(2\right)\end{cases}}\)
theo bài ra \(3x_1-5x_2=6\) \(\left(3\right)\)
từ \(\left(1\right),\left(3\right)\) ta có hệ phương trình \(\hept{\begin{cases}x_1+x_2=\frac{3m-2}{3}\\3x_1-5x_2=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_1+x_2=m+\frac{2}{3}\\x_1-\frac{5}{3}x_2=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{8}{3}x_2=m+\frac{2}{3}-2\\x_1+x_2=m+\frac{2}{3}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_2=\frac{3}{8}m-\frac{1}{2}\\x_1+\frac{3}{8}m-\frac{1}{2}=m+\frac{2}{3}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_2=\frac{3}{8}m-\frac{1}{2}\\x_1=m-\frac{3}{8}m+\frac{2}{3}+\frac{1}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_2=\frac{3}{8}m-\frac{1}{2}\\x_1=\frac{5}{8}m+\frac{7}{6}\end{cases}}\) \(\left(4\right)\)
thay (4) vào (2) ta được
\(\left(\frac{3}{8}m-\frac{1}{2}\right)\left(\frac{5}{8}m+\frac{7}{6}\right)=\frac{-3m-1}{3}\)
\(\Leftrightarrow\frac{15}{64}m+\frac{7}{16}-\frac{5}{16}m-\frac{7}{12}=-m-\frac{1}{3}\)
\(\Leftrightarrow\frac{-5}{64}m-\frac{7}{48}+m+\frac{1}{3}=0\)
\(\Leftrightarrow\frac{59}{64}m+\frac{3}{16}=0\)
\(\Leftrightarrow\frac{59}{64}m=\frac{-3}{16}\)
\(\Leftrightarrow m=\frac{-12}{59}\) ( TM \(\forall m\))
vậy \(m=\frac{-12}{59}\) là giá trị cần tìm
\(\Delta'=16-\left(3m+1\right)\ge0\Rightarrow m\le5\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-8\\x_1x_2=3m+1\end{matrix}\right.\)
Kết hợp điều kiện đề bài ta được: \(\left\{{}\begin{matrix}x_1+x_2=-8\\5x_1-x_2=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=-8\\6x_1=-6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-1\\x_2=-7\end{matrix}\right.\)
Thế vào \(x_1x_2=3m+1\)
\(\Rightarrow\left(-1\right).\left(-7\right)=3m+1\)
\(\Rightarrow m=2\) (thỏa mãn)