K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2021

a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ne2\\x\ne4\\x\ge0\end{matrix}\right.\)

 

21 tháng 8 2021

a, ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x-2>0\\x-4\ne0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ge0\\x>2\\x\ne4\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x>2\\x\ne4\end{matrix}\right.\)

mik thấy đề sai sai

1 tháng 2 2019

\(a)A=\dfrac{\sqrt{3}-\sqrt{6}}{1-\sqrt{2}}-\dfrac{2+\sqrt{8}}{1+\sqrt{2}}\\ A=\dfrac{\left(\sqrt{3}-\sqrt{6}\right)\left(1+\sqrt{2}\right)}{1^2-\left(\sqrt{2}\right)^2}-\dfrac{\left(2+\sqrt{8}\right)\left(1-\sqrt{2}\right)}{1^2-\left(\sqrt{2}\right)^2}\\ A=-\left(\sqrt{3}+\sqrt{6}-\sqrt{6}-2\sqrt{3}\right)+2-2\sqrt{2}+2\sqrt{2}-4\\ A=\sqrt{3}-2\)

\(b)B=\left(\dfrac{1}{x-4}-\dfrac{1}{x+4\sqrt{x}+4}\right).\dfrac{x+2\sqrt{x}}{\sqrt{x}}\\ B=\left[\dfrac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{1}{\left(\sqrt{x}+2\right)^2}\right].\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}}\\ B=\dfrac{\sqrt{x}+2-\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)^2}.\left(\sqrt{x}+2\right)\\ B=\dfrac{\sqrt{x}+2-\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}+2\right)}.\left(\sqrt{x}+2\right)\\ B=\dfrac{4}{x-4}\)

8 tháng 9 2018

Mọi ngươi giúp em với ạ chứ em làm câu a Bài 1 và 2 ra kết quả dài quá :(

Bài 1: 

a: \(P=\dfrac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)

\(=\dfrac{a-\sqrt{a}-12}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\)

b: Để P<1 thì P-1<0

\(\Leftrightarrow\dfrac{\sqrt{a}-4-\sqrt{a}+2}{\sqrt{a}-2}< 0\)

=>căn a-2>0

=>a>4

a: \(=\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}=\sqrt{ab}-\sqrt{ab}=0\)

b: \(=\dfrac{\left(\sqrt{x}-2\sqrt{y}\right)^2}{\sqrt{x}-2\sqrt{y}}+\dfrac{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)

\(=\sqrt{x}-2\sqrt{y}+\sqrt{y}=\sqrt{x}-\sqrt{y}\)

c: \(=\sqrt{x}+2-\dfrac{x-4}{\sqrt{x}-2}\)

\(=\sqrt{x}+2-\sqrt{x}-2=0\)

17 tháng 2 2019

a) \(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}:\dfrac{x\sqrt{x}-x+x-\sqrt{x}+\sqrt{x}-x}{\sqrt{x}\left(x+\sqrt{x}\right)}\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}.\dfrac{\sqrt{x}\left(x+\sqrt{x}\right)}{x\sqrt{x}-x}\)

\(=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right).\dfrac{x+\sqrt{x}}{x}\)

\(=\left(\sqrt{x}+1\right).\dfrac{x+\sqrt{x}}{\sqrt{x}}=\dfrac{\left(\sqrt{x}+1\right)\left(x+\sqrt{x}\right)}{x}\)

b) Thay \(x=4-2\sqrt{3}\) vào A có:

\(A=\dfrac{\left(4-2\sqrt{3}+1\right)\left(4-2\sqrt{3}+\sqrt{4-2\sqrt{3}}\right)}{4-2\sqrt{3}}\)

\(=\dfrac{\left(5-2\sqrt{3}\right)\left(4-2\sqrt{3}+\sqrt{\left(1-\sqrt{3}\right)^2}\right)}{4-2\sqrt{3}}\)

\(=\dfrac{\left(5-2\sqrt{3}\right)\left(4-2\sqrt{3}+\sqrt{3}-1\right)}{4-2\sqrt{3}}=\dfrac{\left(5-2\sqrt{3}\right)\left(3-\sqrt{3}\right)}{4-2\sqrt{3}}\)

\(=\dfrac{15-5\sqrt{3}-6\sqrt{3}+6}{4-2\sqrt{3}}=\dfrac{21-11\sqrt{3}}{4-2\sqrt{3}}=\dfrac{\left(21-11\sqrt{3}\right)\left(4+2\sqrt{3}\right)}{\left(4-2\sqrt{3}\right)\left(4+2\sqrt{3}\right)}=\dfrac{\left(21-11\sqrt{3}\right)2\left(2+\sqrt{3}\right)}{16-12}\)

\(=\dfrac{\left(21-11\sqrt{3}\right)2\left(2+\sqrt{3}\right)}{4}=\dfrac{42+21\sqrt{3}-22\sqrt{3}-33}{2}=\dfrac{9-\sqrt{3}}{2}\)

15 tháng 12 2017

a,ĐKXĐ \(x\ge0;x\ne1\)

Ta có A=\(\dfrac{x+2\sqrt{x}+1+2\sqrt{x}-x-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{x+2\sqrt{x}+1-x+\sqrt{x}-\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

A=\(\dfrac{4\sqrt{x}}{x-1}.\dfrac{x-1}{2\sqrt{x+1}}\)

A=\(\dfrac{4\sqrt{x}}{2\sqrt{x}+1}\)

b, Thay x=\(1-\dfrac{\sqrt{3}}{2}\) vào biểu thức A ta có

A=\(\dfrac{4\sqrt{1-\dfrac{\sqrt{3}}{2}}}{2\sqrt{1-\dfrac{\sqrt{3}}{2}}+1}=\dfrac{\sqrt{16-8\sqrt{3}}}{\sqrt{4-2\sqrt{3}}+1}=\dfrac{6-2\sqrt{3}}{3}\)

Bài 2: 

a: ĐKXĐ: a>0 và b>0

b: \(P=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}=\sqrt{a}-\sqrt{b}\)

c: Khi a=4 và b=1 thì P=2-1=1

2 tháng 1 2019

1.

a) \(\sqrt{3-2\sqrt{2}}+\sqrt{6-4\sqrt{2}}+\sqrt{9-4\sqrt{2}}=\sqrt{2-2\sqrt{2}+1}+\sqrt{4-2.2.\sqrt{2}+2}+\sqrt{8-2.2\sqrt{2}.1+1}=\sqrt{\left(\sqrt{2}\right)^2-2.\sqrt{2}.1+1^2}+\sqrt{2^2-2.2.\sqrt{2}+\left(\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{2}\right)^2-2.2\sqrt{2}.1+1^2}=\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{2}-1\right)^2}=\left|\sqrt{2}-1\right|+\left|2-\sqrt{2}\right|+\left|2\sqrt{2}-1\right|=\sqrt{2}-1+2-\sqrt{2}+2\sqrt{2}-1=2\sqrt{2}\)

b) \(\sqrt{\left(4+\sqrt{10}\right)^2}-\sqrt{\left(4-\sqrt{10}\right)^2}=\left|4+\sqrt{10}\right|-\left|4-\sqrt{10}\right|=4+\sqrt{10}-4+\sqrt{10}=2\sqrt{10}\)

c) \(\dfrac{1}{\sqrt{2013}-\sqrt{2014}}-\dfrac{1}{\sqrt{2014}-\sqrt{2015}}=\dfrac{\sqrt{2013}+\sqrt{2014}}{\left(\sqrt{2013}-\sqrt{2014}\right)\left(\sqrt{2013}+\sqrt{2014}\right)}-\dfrac{\sqrt{2014}+\sqrt{2015}}{\left(\sqrt{2014}-\sqrt{2015}\right)\left(\sqrt{2014}+\sqrt{2015}\right)}=\dfrac{\sqrt{2013}+\sqrt{2014}}{2013-2014}-\dfrac{\sqrt{2014}+\sqrt{2015}}{2014-2015}=-\left(\sqrt{2013}+\sqrt{2014}\right)+\sqrt{2014}+\sqrt{2015}=-\sqrt{2013}-\sqrt{2014}+\sqrt{2014}+\sqrt{2015}=\sqrt{2015}-\sqrt{2013}\)

2.

a) \(x^2-2\sqrt{5}x+5=0\Leftrightarrow x^2-2.x.\sqrt{5}+\left(\sqrt{5}\right)^2=0\Leftrightarrow\left(x-\sqrt{5}\right)^2=0\Leftrightarrow x-\sqrt{5}=0\Leftrightarrow x=\sqrt{5}\)Vậy S={\(\sqrt{5}\)}

b) ĐK:x\(\ge-3\)

\(\sqrt{x+3}=1\Leftrightarrow\left(\sqrt{x+3}\right)^2=1^2\Leftrightarrow x+3=1\Leftrightarrow x=-2\left(tm\right)\)

Vậy S={-2}

3.

a) \(A=\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}=\dfrac{\sqrt{x}\left(x\sqrt{x}-1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)=\sqrt{x}\left(\sqrt{x}-1\right)-2\sqrt{x}-1+2\sqrt{x}+2=x-\sqrt{x}+1\)

b) Ta có \(A=x-\sqrt{x}+1=x-2\sqrt{x}.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Ta có \(\left(\sqrt{x}-\dfrac{1}{2}\right)^2\ge0\Leftrightarrow\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\Leftrightarrow A\ge\dfrac{3}{4}\)

Dấu bằng xảy ra khi x=\(\dfrac{1}{4}\)

Vậy GTNN của A=\(\dfrac{3}{4}\)

20 tháng 10 2022

a: \(A=\dfrac{-x+\sqrt{x}-3-\sqrt{x}-1}{x-1}:\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1-8\sqrt{x}}{x-1}\)

\(=\dfrac{-x-4}{x-1}\cdot\dfrac{x-1}{-4\sqrt{x}}=\dfrac{x+4}{4\sqrt{x}}\)

b: Khi x=4-2 căn 3 thì \(A=\dfrac{4-2\sqrt{3}+4}{4\left(\sqrt{3}-1\right)}=\dfrac{8-2\sqrt{3}}{4\left(\sqrt{3}-1\right)}=\dfrac{3\sqrt{3}+1}{4}\)

c: \(A-1=\dfrac{x+4-4\sqrt{x}}{4\sqrt{x}}=\dfrac{\left(\sqrt{x}-2\right)^2}{4\sqrt{x}}>0\)

=>A>1

22 tháng 9 2018

....

a: \(P=\left(\dfrac{x-1}{2\sqrt{x}}\right)^2\cdot\dfrac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{x-1}\)

\(=\dfrac{\left(x-1\right)^2}{4x}\cdot\dfrac{-4\sqrt{x}}{x-1}=\dfrac{-\left(x-1\right)}{\sqrt{x}}\)

b: Khi \(x=4+2\sqrt{3}\) thì \(P=\dfrac{-\left(4+2\sqrt{3}-1\right)}{\sqrt{3}+1}=\dfrac{-\left(3+2\sqrt{3}\right)}{\sqrt{3}+1}=\dfrac{-3-\sqrt{3}}{2}\)

c: Để P<0 thì -(x-1)<0

=>x-1>0

=>x>1

26 tháng 6 2018

HD nha bn^^

\(x\sqrt{x}-1=\sqrt{x^3}-1\) (Hằng đẳng thức)

Mấu chốt là ở chỗ này. Bn khai triển sau rút gọn là đc