K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2019

a3 + b3 + c3 = a2 + b2 + c2 = 1

\(\Rightarrow\)a2 ( 1 - a ) + b2 ( 1 - b ) + c2 ( 1 - c ) = 0 ( 1 )

Mà a2 + b2 + c2 = 1 \(\Rightarrow\)| a | \(\le\)1, | b | \(\le\)1 , | c | \(\le\)1

\(\Rightarrow\hept{\begin{cases}1-a\ge0\\1-b\ge0\\1-c\ge0\end{cases}}\Rightarrow\hept{\begin{cases}a^2\left(1-a\right)\ge0\\b^2\left(1-b\right)\ge0\\c^2\left(1-c\right)\ge0\end{cases}}\)

\(\Rightarrow\)a2 ( 1 - a ) + b2 ( 1 - b ) + c2 ( 1 - c ) \(\ge\)0 ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\hept{\begin{cases}a^2\left(1-a\right)=0\\b^2\left(1-b\right)=0\\c^2\left(1-c\right)=0\end{cases}}\)

( a,b,c ) là hoán vị của ( 0 ; 0 ; 1 )

Vậy S = 1

9 tháng 10 2020

Ta có: \(ab+bc+ca=\frac{\left(a+b+c\right)^2-a^2-b^2-c^2}{2}=0\)

\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=1\)

\(\Rightarrow abc=0\)

Từ đó ta có hpt\(\hept{\begin{cases}a+b+c=1\\ab+bc+ca=0\\abc=0\end{cases}}\). Theo định lý Viet suy ra a,b,c là các nghiệm của \(x^3-x^2=0\Leftrightarrow x.x\left(x-1\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

\(\Rightarrow\left(a,b,c\right)=\left(1,0,0\right)\)và các hoán vị

Khi đó: \(a^{2019}+b^{2020}+c^{2021}=1\)

14 tháng 8 2019

Ta có:  \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=a^3+b^3+c^3-3abc\)

\(\Rightarrow\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-ac-bc}=2019\left(đpcm\right)\)

Ta có : \(\left(a+b+c\right)\left(a^2+b^2+^2-ab-ac-bc\right)\)

\(=a^3+b^3+c^3-3abc\)

\(\Leftrightarrow\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-ac-bc}=2019\)

\(\Rightarrowđpcm\)

NV
24 tháng 9 2019

\(a^{2019}+a^{2019}+1+1+...+1\ge2019a^2\) (2017 số 1)

\(\Leftrightarrow2a^{2019}+2017\ge2019a^2\)

Tương tự: \(2b^{2019}+2017\ge2019b^2\) ; \(2c^{2019}+2017\ge2019c^2\)

Cộng vế với vế:

\(2\left(a^{2019}+b^{2019}+c^{2019}\right)+2017.3\ge2019\left(a^2+b^2+c^2\right)\)

\(\Rightarrow a^{2019}+b^{2019}+c^{2019}\ge\frac{2019\left(a^2+b^2+c^2\right)-2017.3}{2}=3\)

Dấu "=" xảy ra khi \(a=b=c=1\)