K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Thay m=3 vào phương trình, ta được:

\(x^2+4x+3=0\)

=>(x+1)(x+3)=0

=>\(\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)

b: \(\text{Δ}=4^2-4\cdot1\cdot m=-4m+16\)

Để phương trình có hai nghiệm phân biệt thì Δ>0

=>-4m+16>0

=>-4m>-16

=>m<4

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-4\\x_1x_2=\dfrac{c}{a}=m\end{matrix}\right.\)

\(2x_1x_2=x_1+x_2+10\)

=>2m=-4+10=6

=>m=3(nhận)

c) Ta có: \(\text{Δ}=\left[-2\left(m+1\right)\right]^2-4\cdot1\cdot\left(2m+1\right)\)

\(=\left(-2m-2\right)^2-4\left(2m+1\right)\)

\(=4m^2+8m+4-8m-4\)

\(=4m^2\ge0\forall m\)

Do đó, phương trình luôn có nghiệm

Áp dụng hệ thức Vi-et, ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+1\right)}{1}=2m+2\\x_1\cdot x_2=2m+1\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1-2x_2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_2=2m-1\\x_1=2m+2+x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{2m-1}{3}\\x_1=2m+3+\dfrac{2m-1}{3}=\dfrac{8m+8}{3}\end{matrix}\right.\)

Ta có: \(x_1\cdot x_2=2m+1\)

\(\Leftrightarrow\dfrac{2m-1}{3}\cdot\dfrac{8m+8}{3}=2m+1\)

\(\Leftrightarrow\left(2m-1\right)\left(8m+8\right)=9\left(2m+1\right)\)

\(\Leftrightarrow16m^2+16m-8m-8-18m-9=0\)

\(\Leftrightarrow16m^2-10m-17=0\)

\(\text{Δ}=\left(-10\right)^2-4\cdot16\cdot\left(-17\right)=1188\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}m_1=\dfrac{10-6\sqrt{33}}{32}\\m_2=\dfrac{10+6\sqrt{33}}{32}\end{matrix}\right.\)

2 tháng 4 2021

giúp e câu b nx

 

a: Thay m=3 vào pt, ta được:

\(x^2-4x-1=0\)

\(\Leftrightarrow\left(x-2\right)^2=5\)

hay \(\left[{}\begin{matrix}x=\sqrt{5}+2\\x=-\sqrt{5}+2\end{matrix}\right.\)

b: \(\text{Δ}=\left(-4\right)^2-4\left(-2m+5\right)\)

\(=16+8m-20=8m-4\)

Để phương trình có hai nghiệm thì 8m-4>=0

hay m>=1/2

Theo đề, ta có: \(\left(x_1+x_2\right)^2+3x_1x_2-3\left(x_1+x_2\right)=0\)

\(\Leftrightarrow4^2-3\cdot4+3\left(-2m+5\right)=0\)

\(\Leftrightarrow4-6m+15=0\)

=>-6m+19=0

hay m=19/6(nhận)

15 tháng 2 2022

T gửi nhầm bài xl