K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2015

a) \(\Delta\)' = (-m)2 - m(m + 1) = m- m2 - m = - m

Để (*) có 2 nghiệm phân biệt <=> \(\Delta\)\(\ge\) 0 <=> - m \(\ge\) 0 <=> m \(\le\) 0

b) Với m \(\le\) 0 thì (*) có 2 nghiệm x1 ; x2. Theo hệ thức Vi ét có: 

x+ x2 = 2m ; x1. x2 = m(m +1)

Để x1 + 2x2 = 0 <=> x1 = -2x2

=> x1 + x2 = -2x2 + x2 = -x2 = 2m => x2 = -2m và x1 = -2. (-2m) = 4m

Khi đó, x1.x2 = -8m = m.(m+1) => 9m2 + m = 0 <=> m(m +9) = 0 <=> m = 0 (TM) hoặc m  =-9  (không TM ) 

Vậy m = 0 thì...

4 tháng 7 2020

a, Để phương trình có 2 nghiệm phân biệt thì 

\(\Delta>0< =>\left(-2m\right)^2-4.\left(2m^2-1\right)>0\)

\(< =>4m^2-8m^2+4>0\)

\(< =>-4m^2+4>0\)

\(< =>m< 1\)

b, bạn dùng viet và phân tích 1 xíu là ok

Ta có : \(x^2-2mx+2m^2-1=0\left(a=1;b=-2m;c=2m^2-1\right)\)

a, Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)

 \(\left(-2m\right)^2-4\left(2m^2-1\right)>0\)

\(\Leftrightarrow4m^2-8m^2+4>0\Leftrightarrow-4m^2+4>0\)

\(\Leftrightarrow-4m^2>-4\Leftrightarrow m< 1\)

b, Theo hệ thức Vi et ta có : \(\hept{\begin{cases}S=x_1+x_2=\frac{-b}{a}=\frac{2m}{1}=2m\\P=x_1x_2=\frac{c}{a}=\frac{2m^2-1}{1}=2m^2-1\end{cases}}\)

Ta có : \(x_1^3-x_1^2+x_2^3-x_2^2=2\)

Ta có thể viết là : \(x_1^3+x_2^3-\left(x_1^2+x_2^2\right)=2\)tương tự vs \(x_1^3+x_2^3-\left(x_1+x_2\right)^2=2\)

\(\Leftrightarrow x_1^3+x_2^3-\left(2m\right)^2=2\Leftrightarrow x_1^3+x_2^3-4m^2=2\)(*)

Phân tích nốt : cái \(x_1^3+x_2^3\)tớ ko biết phân tích thế nào, lm chỉ sợ sai 

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0a) Giải phương trình với m = -2b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1c) Tìm các giá trị của m để phương trình trên có nghiệm kép2.Xác định m để mỗi cặp phương trình sau có nghiệm chunga) x2 + mx +2 = 0 và x2 +2x + m = 0b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 03. Cho phương trình (m+1)x2 +4mx +4m - 1 =0a) Giải phương trình với m...
Đọc tiếp

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0

a) Giải phương trình với m = -2

b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1

c) Tìm các giá trị của m để phương trình trên có nghiệm kép

2.Xác định m để mỗi cặp phương trình sau có nghiệm chung

a) x2 + mx +2 = 0 và x2 +2x + m = 0

b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 0

3. Cho phương trình (m+1)x2 +4mx +4m - 1 =0

a) Giải phương trình với m = - 2

b) Với giá trị nào của m thì phương trình có hai nghiệm phân biệt

c) Tìm m để phương trình có hai nghiệm thỏa mãn điều kiện x1 = - 2x2

4. Cho phương trình x2 - 2(m+4)x +m2 -8 =0

a) Tìm m để biểu thức A= x12 + x22 - x1 - x2 đạt giá trị nhỏ nhất

b) Tìm m để biểu thức B= x1 + x2 -3x1x2 đạt giá trị lớn nhất

c) Tìm m để biểu thức C= x12 + x22 - x1x2 đạt giá trị lớn nhất

Mong mọi người giúp mình, mình thực sự rất cần. Cảm ơn trước ạ. Làm được bài nào thì cmt ngay giúp mình ạ.

1
18 tháng 2 2021

Bài 1 : a, Thay m = -2 vào phương trình ta được : 

\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)

Ta có : \(\Delta=64-60=4>0\)

Vậy phương trình có 2 nghiệm phân biệt 

\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)

b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)

\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)

\(1+2\left(m-2\right)+m^2-3m+5=0\)

\(6+2m-4+m^2-3m=0\)

\(2-m+m^2=0\)( giải delta nhé )

\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)

Vậy phương trình vô nghiệm 

c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )

Xin lựa a;b ... c;d e rỗng tuếch :>> (ko bt đúng ko nữa).

a, Thay m = 5 vào biểu thức ta đc 

 \(x^2-2\left(5+6\right)x+5-4=0\)

\(x^2-33x+1=0\)

\(\Delta=\left(-33\right)^2-4.1.1=1089-4=1085>0\)

Nên phương trình có 2 nghiệm phân biệt 

\(x_1=\frac{33-\sqrt{1085}}{2};x_2=\frac{33+\sqrt{1085}}{2}\)

b, Ta có :

\(\Delta=\left(2m-2\right)^2-4\left(m-4\right)=4m^2-4-4m+16=4m^2-4m+12\)

\(=\left(4m^2-4m+1\right)+11\ge11\forall m\)

Vậy phuwong trình có 2 nghiệm phân biệt vs mọi x