Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(x^2-\left(m+2\right)x+m=0\)
(a=1;b=-(m+2);c=m)
Ta có:\(\Delta=\left[-\left(m+2\right)\right]^2-4.1.m\)
\(=\left(m+2\right)^2-4m\)
\(=m^2+2m.2+2^2-4m\)
\(=m^2+4m+4-4m\)
\(=m^2+4\)
Vì\(m^2\ge0\forall m\Rightarrow m^2+4m\ge0\left(1\right)\)
Vậy pt luôn có nghiện với mọi m
b,Xét hệ thức vi-ét,ta có:
\(\hept{\begin{cases}x_1+x_2=m+2\\x_1.x_2=m\end{cases}}\)
Theo đề bài ,ta có:
\(x_1+x_2-3x_1x_2=2\)
\(\Leftrightarrow m+2-3m=2\)
\(\Leftrightarrow-2m+2=2\)
\(\Leftrightarrow-2m=2-2\)
\(\Leftrightarrow m=0\)[t/m(1)]
Vậy với m=0 thì pt thảo mãn điều kiện đề bài cho
a, Ta có : \(\Delta=\left(m+2\right)^2-4m=m^2+4m+4-4m=m^2+4>0\forall m\)
b, Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m+2\\x_1x_2=\frac{c}{a}=m\end{cases}}\)
Lại có : \(x_1+x_2-3x_1x_2=2\Rightarrow m+2-3m=2\)
\(\Leftrightarrow-2m=0\Leftrightarrow m=0\)
a) Xét \(\Delta=\left(m+1\right)^2-2m+3=m^2+4>0,\forall m\)
Vậy PT luôn có 2 nghiệm phân biệt.
b) \(f\left(x\right)=x^2-\left(m+1\right)x+2m-3=0\)có nghiệm \(x=3\)khi và chỉ khi
\(f\left(3\right)=0\Leftrightarrow3^2-\left(m+1\right).3+2m-3=0\Leftrightarrow3-m=0\Leftrightarrow m=3\)
a) Tam thức bậc hai có \(\Delta'=m^2-m+4=m^2-2.\frac{1}{2}m+\frac{1}{4}-\frac{1}{4}+4=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}>0\).
Suy ra phương trình (1) luôn có nghiệm với mọi m.
b) Theo Vi-et ta có:
\(x_1+x_2=2m,x_1.x_2=m-4\)
Điều kiển để \(x_1+x_2=\frac{x_1^2}{x_2}+\frac{x_2^2}{x_1}\)
\(\Leftrightarrow x_1+x_2=\frac{x_1^3+x_2^3}{x_1x_2}\)
\(\Leftrightarrow x_1+x_2=\frac{\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)}{x_1x_2}\)
\(\Leftrightarrow2m=\frac{\left(2m\right)^3-3\left(m-4\right).2m}{m-4}\)
\(\Leftrightarrow2m\left(m-4\right)=8m^3-6m^2+8m\) và \(m\ne4\)
\(\Leftrightarrow4m\left(2m^2-2m+3\right)=0\) và \(m\ne4\)
\(\Leftrightarrow m=0\)
a. Với \(m=1;n=\sqrt{2}\)thay vào phương trình ta có
\(x^2+\left(\sqrt{2}+1\right)x+\sqrt{2}=0\Leftrightarrow x\left(x+\sqrt{2}\right)+\left(x+\sqrt{2}\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+\sqrt{2}\right)=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-\sqrt{2}\end{cases}}\)
Vậy với \(m=1;n=\sqrt{2}\)thì phương trình có 2 nghiệm \(x=-1;x=-\sqrt{2}\)
b. Ta có \(\Delta=\left(mn+1\right)^2-4mn=m^2n^2+2mn+1-4mn=m^2n^2-2mn+1\)
\(=\left(mn-1\right)^2>0\forall m,n\)
Vậy phương trình luôn có 2 nghiệm phân biệt với mọi m;n
bạn làm được bài này chưa cho mình xin lời giải