K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 1 2024

\(\Leftrightarrow\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x+\dfrac{1}{2}sin\left(4x-\dfrac{\pi}{2}\right)+\dfrac{1}{2}sin2x-\dfrac{3}{2}=0\)

\(\Leftrightarrow1-\dfrac{1}{2}sin^22x-\dfrac{1}{2}cos4x+\dfrac{1}{2}sin2x-\dfrac{3}{2}=0\)

\(\Leftrightarrow1-\dfrac{1}{2}\left(\dfrac{1-cos4x}{2}\right)-\dfrac{1}{2}cos4x+\dfrac{1}{2}sin2x-\dfrac{3}{2}=0\)

\(\Leftrightarrow-\dfrac{3}{4}-\dfrac{1}{4}cos4x+\dfrac{1}{2}sin2x=0\)

\(\Leftrightarrow-\dfrac{3}{4}-\dfrac{1}{4}\left(1-2sin^22x\right)+\dfrac{1}{2}sin2x=0\)

\(\Leftrightarrow...\)

TL
1 tháng 12 2019

Chứng minh các biểu thức đã cho không phụ thuộc vào x.

Từ đó suy ra f'(x)=0

a) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;

b) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;

c) f(x)=\(\frac{1}{4}\)(\(\sqrt{2}\)-\(\sqrt{6}\))=>f'(x)=0

d,f(x)=\(\frac{3}{2}\)=>f'(x)=0

1: cos(2x+pi/6)=cos(pi/3-3x)

=>2x+pi/6=pi/3-3x+k2pi hoặc 2x+pi/6=3x-pi/3+k2pi

=>5x=pi/6+k2pi hoặc -x=-1/2pi+k2pi

=>x=pi/30+k2pi/5 hoặc x=pi-k2pi

2: sin(2x+pi/6)=sin(pi/3-3x)

=>2x+pi/6=pi/3-3x+k2pi hoặc 2x+pi/6=pi-pi/3+3x+k2pi

=>5x=pi/6+k2pi hoặc -x=2/3pi-pi/6+k2pi

=>x=pi/30+k2pi/5 hoặc x=-1/2pi-k2pi

6 tháng 9 2023

1) \(cos\left(2x+\dfrac{\pi}{6}\right)=cos\left(\dfrac{\pi}{3}-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{6}=\dfrac{\pi}{3}-3x+k2\pi\\2x+\dfrac{\pi}{6}=-\dfrac{\pi}{3}+3x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=\dfrac{\pi}{3}-\dfrac{\pi}{6}+k2\pi\\3x-2x=\dfrac{\pi}{3}+\dfrac{\pi}{6}-k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{\pi}{2}-k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{30}+\dfrac{k2\pi}{5}\\x=\dfrac{\pi}{2}-k2\pi\end{matrix}\right.\) \(\left(k\in N\right)\)

a: \(\Leftrightarrow sin\left(\dfrac{x}{3}-\dfrac{pi}{4}\right)=sinx\)

=>x/3-pi/4=x+k2pi hoặc x/3-pi/4=pi-x+k2pi

=>2/3x=-pi/4+k2pi hoặc 4/3x=5/4pi+k2pi

=>x=-3/8pi+k3pi hoặc x=15/16pi+k*3/2pi

b: =>(sin3x-sin2x)(sin3x+sin2x)=0

=>sin3x-sin2x=0 hoặc sin 3x+sin 2x=0

=>sin 3x=sin 2x hoặc sin 3x=sin(-2x)

=>3x=2x+k2pi hoặc 3x=pi-2x+k2pi hoặc 3x=-2x+k2pi hoặc 3x=pi+2x+k2pi

=>x=k2pi hoặc x=pi/5+k2pi/5 hoặc x=k2pi/5 hoặc x=pi+k2pi

4 tháng 4 2017

a) Cách 1: Ta có:

y' = 6sin5x.cosx - 6cos5x.sinx + 6sinx.cos3x - 6sin3x.cosx = 6sin3x.cosx(sin2x - 1) + 6sinx.cos3x(1 - cos2x) = - 6sin3x.cos3x + 6sin3x.cos3x = 0.

Vậy y' = 0 với mọi x, tức là y' không phụ thuộc vào x.

Cách 2:

y = sin6x + cos6x + 3sin2x.cos2x(sin2x + cos2x) = sin6x + 3sin4x.cos2x + 3sin2x.cos4x + cos6x = (sin2x + cos2x)3 = 1

Do đó, y' = 0.

b) Cách 1:

Áp dụng công thức tính đạo hàm của hàm số hợp

(cos2u)' = 2cosu(-sinu).u' = -u'.sin2u

Ta được

y' =[sin - sin] + [sin - sin] - 2sin2x = 2cos.sin(-2x) + 2cos.sin(-2x) - 2sin2x = sin2x + sin2x - 2sin2x = 0,

vì cos = cos = .

Vậy y' = 0 với mọi x, do đó y' không phụ thuộc vào x.

Cách 2: vì côsin của hai cung bù nhau thì đối nhau cho nên

cos2 = cos2 '

cos2 = cos2 .

Do đó

y = 2 cos2 + 2cos2 - 2sin2x = 1 +cos + 1 +cos - (1 - cos2x) = 1 +cos + cos + cos2x = 1 + 2cos.cos(-2x) + cos2x = 1 + 2cos2x + cos2x = 1.

Do đó y' = 0.


 

\(\Leftrightarrow2cos^2\left(x+\dfrac{pi}{3}\right)-1=0\)

=>\(cos\left(2x+\dfrac{2}{3}pi\right)=0\)

=>2x+2/3pi=pi/2+kpi

=>2x=-1/6pi+kpi

=>x=-1/12pi+kpi/2

mà \(x\in\left(-\dfrac{pi}{2};\dfrac{5}{6}pi\right)\)

nên \(x\in\left\{-\dfrac{1}{12}pi;\dfrac{5}{12}pi\right\}\)

9 tháng 9 2023

\(4sin\left(x+\dfrac{\pi}{3}\right).cos\left(x-\dfrac{\pi}{6}\right)=m^2+\sqrt[]{3}sin2x-cos2x\)

\(\Leftrightarrow4.\left(-\dfrac{1}{2}\right)\left[sin\left(x+\dfrac{\pi}{3}+x-\dfrac{\pi}{6}\right)+sin\left(x+\dfrac{\pi}{3}-x+\dfrac{\pi}{6}\right)\right]=m^2+2.\left[\dfrac{\sqrt[]{3}}{2}.sin2x-\dfrac{1}{2}.cos2x\right]\)

\(\Leftrightarrow2\left[sin\left(2x+\dfrac{\pi}{6}\right)+sin\left(2x-\dfrac{\pi}{6}\right)\right]=m^2+2\)

\(\Leftrightarrow2.2sin2x.cos\dfrac{\pi}{6}=m^2+2\)

\(\Leftrightarrow2.2sin2x.\dfrac{\sqrt[]{3}}{2}=m^2+2\)

\(\Leftrightarrow2\sqrt[]{3}sin2x.=m^2+2\)

\(\Leftrightarrow sin2x.=\dfrac{m^2+2}{2\sqrt[]{3}}\)

Phương trình có nghiệm khi và chỉ khi

\(\left|\dfrac{m^2+2}{2\sqrt[]{3}}\right|\le1\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{m^2+2}{2\sqrt[]{3}}\ge-1\\\dfrac{m^2+2}{2\sqrt[]{3}}\le1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2\ge-2\left(1+\sqrt[]{3}\right)\left(luôn.đúng\right)\\m^2\le2\left(1-\sqrt[]{3}\right)\end{matrix}\right.\)

\(\Leftrightarrow-\sqrt[]{2\left(1-\sqrt[]{3}\right)}\le m\le\sqrt[]{2\left(1-\sqrt[]{3}\right)}\)

14 tháng 7 2017

Đặt \(t=\dfrac{3\pi}{10}-\dfrac{x}{2}\)\(\Rightarrow\pi-3t=\dfrac{\pi}{10}+\dfrac{3\pi}{2}\)

\(pt\Leftrightarrow2sint=sin\left(\pi-3t\right)\)

\(\Leftrightarrow2sint=3sint-4sin^3t\)

\(\Leftrightarrow sint\left(1-4sin^2t\right)=0\)

\(\Leftrightarrow sint\left(2cos2t\right)=0\)

dễ nhé :3

3 tháng 8 2017

dấu tương đương cuối coi lại nhé

16 tháng 8 2021

a, \(\left|sinx+\dfrac{1}{2}\right|=\dfrac{1}{2}\)

\(\Leftrightarrow sin^2x+sinx+\dfrac{1}{4}=\dfrac{1}{4}\)

\(\Leftrightarrow sin^2x+sinx=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=-\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)

16 tháng 8 2021

b, \(tan^2\left(x+\dfrac{\pi}{6}\right)=3\)

\(\Leftrightarrow tan\left(x+\dfrac{\pi}{6}\right)=\pm\sqrt{3}\)

\(\Leftrightarrow x+\dfrac{\pi}{6}=\pm\dfrac{\pi}{3}+k\pi\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k\pi\\x=-\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)