K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1) Bạn tự giải

2) Ta có: \(\Delta=4m^2-8m+9>0\forall m\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt

Theo Vi-ét ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1x_2=m-2\end{matrix}\right.\) (*)

Mặt khác: \(x_1^2+x_2^2=2018\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=2018\)

\(\Rightarrow4m^2-4m+1-2m+4=2018\)

\(\Leftrightarrow4m^2-6m-2013=0\) \(\Leftrightarrow...\)

c)  Từ (*) \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2m-1\\2x_1x_2=2m-4\end{matrix}\right.\) \(\Rightarrow x_1+x_2-2x_1x_2=3\) 

                                         (Không phụ thuộc vào m)

28 tháng 4 2019

Ta có \(\Delta'=\left(m-2\right)^2+m-2\)

                \(=m^2-4m+4+m-2\)

                 \(=m^2-3m+2\)

Để pt có 2 nghiệm phân biệt thì \(\Delta'>0\Leftrightarrow\orbr{\begin{cases}m< 1\\m>2\end{cases}}\)

Teo Vi-et \(\hept{\begin{cases}x_1+x_2=2\left(m-2\right)\\x_1x_2=-m+2\end{cases}}\)

Ta có \(x_1+2x_2=2\)

\(\Leftrightarrow\left(x_1+x_2\right)+x_2=2\)

\(\Leftrightarrow2\left(m-2\right)+x_2=2\)

\(\Leftrightarrow2m-4+x_2=2\)

\(\Leftrightarrow x_2=6-2m\)

Ta có \(x_1+x_2=2\left(m-2\right)\)

\(\Leftrightarrow x_1+6-2m=2m-4\)

\(\Leftrightarrow x_1=4m-10\)

Thay vào tích x1 . x2 được

\(x_1x_2=-m+2\)

\(\Leftrightarrow\left(4m-10\right)\left(6-2m\right)=-m+2\)

\(\Leftrightarrow24m-8m^2-60+20m=-m+2\)

\(\Leftrightarrow8m^2-45m+62=0\)

Có \(\Delta=41\)

\(\Rightarrow\orbr{\begin{cases}m=\frac{45-\sqrt{41}}{16}\left(tm\right)\\m=\frac{45+\sqrt{41}}{16}\left(tm\right)\end{cases}}\)

27 tháng 4 2023

loading...  

4 tháng 5 2016

đề ko nói nói rõ 2 nghiệm thế nào nên tui cho là 2 nghiệm phân biệt

a)\(\Delta=\left(-6\right)^2-4.m=36-4m\)

Để phương trình có 2 nghiệm phân biệt thì:

\(36-4m>0\Leftrightarrow m<9\)

b)Theo định lí vi-et ta có: \(x_1+x_2=6;x_1.x_2=m\)

=>\(\left(x_1-x_2\right)^2=x_1^2+x_2^2-2x_1.x_2=\left(x_1+x_2\right)^2-4x_1.x_2\)

\(=6^2-4.m=36-4m\)

Mà x1-x2=4 nên: 42=36-4m

<=>tự giải tìm m

4 tháng 5 2016

phương trình thiếu vế sao chắc là =0

a)tính denta và giải khi denta >0 tìm ra m

b)dựa vào viet

25 tháng 4 2019

a) Với m = - 1

\(Pt:x^2+2x-8=0\)

\(\Delta'=b'^2-ac=1+8=9\)

\(x_1=\frac{-b'+\sqrt{\Delta'}}{a}=\frac{-1+3}{1}=2\)

\(x_2=\frac{-b'-\sqrt{\Delta'}}{a}=\frac{-1-3}{1}=-4\)

b)  \(\frac{1}{x_1}+\frac{1}{x_2}=16\Leftrightarrow\frac{x_1+x_2}{x_1x_2}=16\)

\(\Leftrightarrow\frac{\frac{-b}{a}}{\frac{c}{a}}=16\Leftrightarrow\frac{-b}{c}=16\)

\(\Leftrightarrow\frac{2m}{m-7}=16\Leftrightarrow2m=16m-112\)

\(\Leftrightarrow14m=112\Leftrightarrow m=8\)