Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm của (P) và (d) là :
\(x^2=2\left(m+3\right)x-m^2-3.\)
\(\Leftrightarrow x^2-2\left(m+3\right)x+m^2+3=0\left(1\right)\)
\(\Delta'=[-\left(m+3\right)]^2-m^2-3=m^2+6m+9-m^2-3=6m+6\)
Để (d) cắt (P) tại hai điểm phân biệt có hoành độ x1 ; x2 thì phương trình (1) có hai nghiệm phân biệt x1 x2.
\(\Rightarrow\Delta'>0\Leftrightarrow6m+6>0\Leftrightarrow m>-1\)
Theo vi ét ta có:
\(\hept{\begin{cases}x_1+x_2=2\left(m+3\right)\\x_1x_2=m^2+3\end{cases}}\)
Thay vào hệ thức : \(x_1+x_2-\frac{x_1x_2}{x_1+x_2}=\frac{57}{4}\)ta được.
\(2\left(m+3\right)-\frac{m^2+3}{2\left(m+3\right)}=\frac{57}{4}\Leftrightarrow\frac{4\left(m+3\right)^2-m^2-3}{2\left(m+3\right)}=\frac{57}{4}\)
\(\Leftrightarrow\frac{4m^2+24m+36-m^2-3}{2m+6}=\frac{57}{4}\Leftrightarrow\frac{3m^2+24m+33}{2m+6}=\frac{57}{4}\)
\(\Leftrightarrow12m^2+96m+132=114m+342\)\(\Leftrightarrow12m^2-18m-210=0\Leftrightarrow2m^2-3m-35=0\)
\(m_1=5\left(TM\right);m_2=-\frac{7}{2}\left(KTM\right)\)
Vậy \(m=5\).
Phương trình hoành độ giao điểm:
x2 = 2x - m
<=> x2 - 2x + m = 0
Để (d) cắt (P) tại 2 điểm phân biệt thì \(\Delta>0\)
<=> (-1)2 - m > 0
<=> 1 - m > 0
<=> m < 1
Ta có: y1 = x12
y2 = x22
y1 + y2 + x12x22 = 6(x1 + x2)
<=> x12 + x22 + x12x22 = 6(x1 + x2)
<=> (x1 + x2)2 - 2x1x2 + (x1x2)2 = 6(x1 + x2)
Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2\\x_1x_2=\frac{c}{a}=m\end{cases}}\)
<=> 22 - 2m + m2 = 6.2
<=> 4 - 2m + m2 = 12
<=> 4 - 2m + m2 - 12 = 0
<=> m2 - 2m - 8 = 0
<=> m = 4 (ktm) hoặc m = -2 (tm)
=> m = -2
Phương trình hoành độ giao điểm: \(x^2-mx-4=0\)
\(ac=-4< 0\Rightarrow\) pt luôn có 2 nghiệm trái dấu hay d luôn cắt (P) tại 2 điểm pb
Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=-4\end{matrix}\right.\)
\(Q=\frac{2\left(x_1+x_2\right)+7}{\left(x_1+x_2\right)^2-2x_1x_2}=\frac{2m+7}{m^2+8}=1-\frac{m^2-2m+1}{m^2+8}=1-\frac{\left(m-1\right)^2}{m^2+8}\le1\)
\(\Rightarrow Q_{max}=1\) khi \(m=1\)
Pt hoành độ giao điểm:
\(3x^2+2\left(m+1\right)x-1=0\) (1)
\(ac=-3< 0\Rightarrow\left(1\right)\) luôn có 2 nghiệm pb trái dấu hay (d) luôn cắt (P) tại 2 điểm pb với mọi m
Do \(x_1;x_2\) là nghiệm nên: \(\left\{{}\begin{matrix}3x_1^2+2\left(m+1\right)x_1-1=0\\3x_2^2+2\left(m+1\right)x_2-1=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(m+1\right)x_1=\frac{1-3x_1^2}{2}\\\left(m+1\right)x_2=\frac{1-3x_2^2}{2}\end{matrix}\right.\) \(\Rightarrow\left(m+1\right)\left(x_1+x_2\right)=1-\frac{3}{2}x_1^2-\frac{3}{2}x_2^2\)
\(f\left(x_1\right)-f\left(x_2\right)=x_1^3-x_2^3+\left(m+1\right)\left(x_1^2-x_2^2\right)-\left(x_1-x_2\right)\)
\(=\left(x_1-x_2\right)\left(x^2_1+x_2^2+x_1x_2+\left(m+1\right)\left(x_1+x_2\right)-1\right)\)
\(=\left(x_1-x_2\right)\left(x_1^2+x_2^2+x_1x_2+1-\frac{3}{2}x_1^2-\frac{3}{2}x_2^2-1\right)\)
\(=-\frac{1}{2}\left(x_1-x_2\right)\left(x_1^2+x_2^2-2x_1x_2\right)=-\frac{1}{2}\left(x_1-x_2\right)^3\)
Pt hoành độ giao điểm: \(\frac{1}{2}x^2=mx+2\Leftrightarrow x^2-2mx-4=0\)
\(x_1x_2=-4< 0\Rightarrow x_1;x_2\) trái dấu
Mà \(\left|x_1\right|=4\left|x_2\right|\Rightarrow x_1=-4x_2\)
Kết hợp Viet ta được: \(\left\{{}\begin{matrix}x_1x_2=-4\\x_1=-4x_2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-4x_2^2=-4\\x_1=-4x_2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x_1=-4;x_2=1\\x_1=4;x_2=-1\end{matrix}\right.\)
Mà \(x_1+x_2=2m\Rightarrow m=\frac{x_1+x_2}{2}\Rightarrow\left[{}\begin{matrix}m=-\frac{3}{2}\\m=\frac{3}{2}\end{matrix}\right.\)
a) Lập phương trình hoành độ giao điểm:
x2 = mx + 3
<=> x2 - mx - 3 = 0
Tọa độ (P) và (d) khi m = 2:
<=> x2 - 2x - 3 = 0
<=> \(\orbr{\begin{cases}x_1=3\\x_2=-1\end{cases}}\) => \(\orbr{\begin{cases}y_1=9\\y_2=1\end{cases}}\)
Tọa độ (P) và (d): A(3; 9) và B(-1; 1)
b) Để (P) và (d) cắt nhau tại 2 điểm phân biệt <=> \(\Delta>0\)
<=> (-m)2 - 4.1(-3) > 0
<=> m2 + 12 > 0 \(\forall m\)
Ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{3}{2}\)
<=> 2x2 + 2x1 = 3x1x2
<=> 2(x2 + x1) = 3x1x2
Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m\\x_1x_2=\frac{c}{a}=-3\end{cases}}\)
<=> 2m = 3(-3)
<=> 2m = -9
<=> m = -9/2