Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét phương trình hoành độ giao điểm
\(x^2=\left(m-1\right)x+m+4\Leftrightarrow x^2-\left(m-1\right)x-m-4=0\text{ }\left(\text{*}\right)\)
để d cắt P tại hai điểm phân biệt nằm ở hai phía của trục tung thì phương trình (*) có hai nghiệm trái dấu
khi đó điều kiện \(\Leftrightarrow-m-4< 0\Leftrightarrow m>-4\)
- Xét pt hoành độ gd....:
x2-(m-1)x-m-4=0 (1)
- để (P) cắt (d) tại 2 đm nằm về 2 phía của trục tung thì pt(1) có 2 nghiệm trái dấu nhau
- \(\left\{{}\begin{matrix}\Delta=\left(m-1\right)^2-4\left(-m-4\right)>0\\P=x_1x_2=-m-4< 0\Leftrightarrow m>-4\end{matrix}\right.\)
Vậy với m>-4 thì ....
Phương trình hoành độ giao điểm của d và (P): x 2 = (m + 2)x – m – 1
↔ x 2 − (m + 2)x + m + 1 = 0 (1)
(d) cắt (P) tại hai điểm phân biệt nằm về hai phía của trục tung khi và chỉ khi phương trình (1) có hai nghiệm phân biệt trái dấu ↔ ac < 0 ↔ m + 1 < 0
↔ m < −1
Vậy m < −1
Đáp án: A
Parabol thì tự vẽ đi chứ
Mấy câu hỏi toàn câu cô giáo dạy hết rồi
1, Do hàm số trên cắt trục hoành tại điểm có hoành độ bằng 3 hay hàm số trên đi qua A(3;0)
<=> \(0=6+b\Leftrightarrow b=-6\)
2, Hoành độ giao điểm (P) ; (d) tm pt
\(x^2-\left(m-1\right)x-m+4=0\)
Để (P) cắt (d) tại 2 điểm pb nằm về 2 phía trục tung khi pt có 2 nghiệm trái dấu hay
\(x_1x_2=-m+4< 0\Leftrightarrow-m< -4\Leftrightarrow m>4\)
PTHĐGĐ là:
x^2-(m-1)x-m^2-1=0
Vì a*c=-m^2-1<0 với mọi m
nên (P) luôn cắt (d) tại hai điểm phân biệt nằm về hai phía của trục tung
PTHĐGĐ là:
x^2-(2m+1)x+m^2+m=0
Để (d) cắt (P) tại hai điểm phân biệt nằm về hai phía trục tung thì m^2+m<0
=>-1<m<0