Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(p^2-p=q^2-3q+2\Leftrightarrow p\left(p-1\right)=\left(q-1\right)\left(q-2\right)⋮2\)=> q>p
TH1: p=2 => q=3 thỏa mãn
TH2: p>2
mà p nguyên tố lẻ => p-1 chia hết cho 2
và p-1 chia hết cho (q-1)(q-2) => p-1> (q-1)(1-2) vô lí
Mình chịu , mk mới hc lp 6 thôi mà bài này là bài lp 9
(*)\(P=2\Rightarrow P^2+2^P=2^2+2^2=4+4=8.\)( là hợp số )
(*)\(P=3\Rightarrow P^2+2^P=3^2+2^3=9+8=17\)( là số nguyên tố )
(*)\(P>3\Rightarrow P\)có dạng \(3k+1\)hoặc \(3k+2\)
+Nếu \(P=3k+1\Rightarrow P^2+2^P=\left(3k+1\right)^2+2^{3k+1}\)
\(3k+1\equiv1\left(mod3\right)\)
\(\Rightarrow\left(3k+1\right)^2\equiv1\left(mod3\right)\)( 1 )
\(2\equiv-1\left(mod3\right)\)
Do \(P\)là số nguyên tố lớn hơn 3 \(\Rightarrow P\) lẻ
\(\Rightarrow2^{3k+1}\equiv-1\left(mod3\right)\) ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\left(3k+1\right)^2+2^{3k+1}\equiv1+\left(-1\right)\left(mod3\right)\)
\(\Rightarrow\left(3k+1\right)^2+2^{3k+1}\equiv0\left(mod3\right)\)
\(\Leftrightarrow P^2+2^P⋮3\) ( là hợp số do \(P^2+2^P>3\) )
+Nếu \(P=3k+2\Rightarrow P^2+2^P=\left(3k+2\right)^2+2^{3k+2}\)
\(3k+2\equiv-1\left(mod3\right)\)
\(\Rightarrow\left(3k+2\right)^2\equiv1\left(mod3\right)\)( 3 )
\(2\equiv-1\left(mod3\right)\)
Do \(P\)là số nguyên tố lớn hơn 3 \(\Rightarrow P\)lẻ
\(\Rightarrow2^{3k+2}\equiv-1\left(mod3\right)\)( 4 )
Từ ( 3 ) và ( 4 ) \(\Rightarrow\left(3k+2\right)^2+2^{3k+2}\equiv1+\left(-1\right)\left(mod3\right)\)
\(\Rightarrow\left(3k+2\right)^2+2^{3k+2}\equiv0\left(mod3\right)\)
\(\Leftrightarrow P^2+2^P⋮3\)( là hợp số )
Vậy \(P=3.\)
Giả sử (x;p) = 1 thì ta thấy (y,p) = 1
Ta có: \(x^2\equiv-y^2\left(mod\text{ p}\right)\)
\(\Leftrightarrow x^{4k+2}\equiv-y^{4k+2}\left(mod\text{ p}\right)\)
\(\Leftrightarrow1\equiv-1\left(mod\text{ p}\right)\)(Định lí Fermat)
Do đó \(\left(x;p\right)\ne1\Rightarrow x⋮p\)và dễ thấy \(y⋮p\)(Đpmcm)
1.
\(x^4+4y^4=x^4+4x^2y^2+y^4-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)
\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)
Do x, y nguyên dương nên số đã cho là SNT khi:
\(x^2-2xy+2y^2=1\Rightarrow\left(x-y\right)^2+y^2=1\)
\(y\in Z^+\Rightarrow y\ge1\Rightarrow\left(x-y\right)^2+y^2\ge1\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=1\)
Thay vào kiểm tra thấy thỏa mãn
2. \(N=n^4+4^n\)
- Với n chẵn hiển nhiên N là hợp số
- Với \(n\) lẻ: \(\Rightarrow n=2k+1\)
\(N=n^4+4^n=n^4+4^{2k+1}=n^4+4.4^{2k}+4n^2.4^k-n^2.4^{k+1}\)
\(=\left(n^2+2.4^k\right)^2-\left(n.2^{k+1}\right)^2=\left(n^2+2.4^k-n.2^{k+1}\right)\left(n^2+2.4^k+n.2^{k+1}\right)\)
Mặt khác:
\(n^2+2.4^k-n.2^{k+1}\ge2\sqrt{2n^2.4^k}-n.2^{k+1}=2\sqrt{2}n.2^k-n.2^{k+1}\)
\(=n.2^{k+1}\left(\sqrt{2}-1\right)\ge2\left(\sqrt{2}-1\right)>1\)
\(\Rightarrow N\) là tích của 2 số dương lớn hơn 1
\(\Rightarrow\) N là hợp số
Bài 4 chắc không có cách "đại số" nào (tức là dựa vào lý luận chia hết tổng quát) để giải. Mình nghĩ vậy (có lẽ có, nhưng mình ko biết).
Chắc chỉ sáng lọc và loại trừ theo quy tắc kiểu: do đổi vị trí bất kì đều là SNT nên không thể chứa các chữ số chẵn và chữ số 5, như vậy số đó chỉ có thể chứa các chữ số 1,3,7,9
Nó cũng không thể chỉ chứa các chữ số 3 và 9 (sẽ chia hết cho 3)
Từ đó sàng lọc được các số: 113 (và các số đổi vị trí), 337 (và các số đổi vị trí)
Đề kiểu gì vậy.
Ta có: \(2p^2⋮p^2\)thì là hợp số luông chứ chứng minh cái gì nữa
p chia 3 dư 1 => p2+2 chia hết cho 3 mà p2 +2 là số nguyên tố => p2+2 =3 => p=1 => vô lý
p chia 3 dư 2 => p2+2 chia hết cho 3 => vô lý
p chia hết cho 3 mà p là số nguyên tố => p=3 => p2+2=11 (đúng) và p3+p2+1=37( đúng)
=> p=3