Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{8\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}+8}{\sqrt{x}-3}\)
Do \(A>0\) \(\forall x\ge0\Rightarrow\)để P xác định thì \(B\ge0\Rightarrow x>9\)
\(\Rightarrow P=\sqrt{\dfrac{\sqrt{x}+8}{\sqrt{x}-3}.\dfrac{x+7}{\sqrt{x}+8}}=\sqrt{\dfrac{x+7}{\sqrt{x}-3}}=\sqrt{\sqrt{x}+3+\dfrac{16}{\sqrt{x}-3}}\)
\(\Rightarrow P=\sqrt{\sqrt{x}-3+\dfrac{16}{\sqrt{x}-3}+6}\ge\sqrt{2\sqrt{\dfrac{16\left(\sqrt{x}-3\right)}{\sqrt{x}-3}}+6}=\sqrt{14}\)
\(\Rightarrow P_{min}=\sqrt{14}\) khi \(x=49\)
a/ \(P=12\)
b/ \(Q=\frac{\sqrt{x}}{\sqrt{x}-2}\)
c/ Ta có:
\(\frac{P}{Q}=\frac{\frac{x+3}{\sqrt{x}-2}}{\frac{\sqrt{x}}{\sqrt{x}-2}}=\frac{x+3}{\sqrt{x}}\ge\frac{2\sqrt{3x}}{\sqrt{x}}=2\sqrt{3}\)
Dấu = xảy ra khi x = 3 (thỏa tất cả các điều kiện )
a. Thay x = 3 vào biểu thức P ta được :
\(p=\frac{x+3}{\sqrt{x}-2}=\frac{9+3}{\sqrt{9}-2}=12\)
b, \(Q=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{x-4}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x-3\sqrt{x}+2+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}}{\sqrt{x}-2}\)
c, Ta có :
\(\frac{P}{Q}=\frac{\frac{x+3}{\sqrt{x}-2}}{\frac{\sqrt{x}}{\sqrt{x}-2}}=\frac{x+3}{\sqrt{x}}\ge\frac{2\sqrt{3x}}{\sqrt{x}}=2\sqrt{3}\)
Vậy GTNN \(\frac{P}{Q}=2\sqrt{3}\) khi và chỉ khi \(x=3\)
1) ĐKXĐ: \(\left\{{}\begin{matrix}\sqrt{x}\ge0\\x-9\ne0\\\sqrt{x}-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)\(A=\left(\dfrac{2\sqrt{x}}{x-9}+\dfrac{1}{\sqrt{x}-3}\right):\dfrac{3}{\sqrt{x}-3}=\dfrac{2\sqrt{x}+\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{3}=\dfrac{3\sqrt{x}+3}{3\left(\sqrt{x}+3\right)}=\dfrac{3\left(\sqrt{x}+1\right)}{3\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+3\right)}\)2) Để A=\(\dfrac{5}{6}\) thì \(\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+3\right)}=\dfrac{5}{6}\Leftrightarrow\left(\sqrt{x}+1\right)6=\left(\sqrt{x}+3\right)5\Leftrightarrow6\sqrt{x}+6=5\sqrt{x}+15\Leftrightarrow\sqrt{x}=9\Leftrightarrow x=81\)
1. Ta có:
\(A=\left(\dfrac{2\sqrt{x}}{x-9}+\dfrac{1}{\sqrt{x}-3}\right):\dfrac{3}{\sqrt{x}-3}\)
\(=\dfrac{2\sqrt{x}.\left(\sqrt{x}-3\right)}{3\left(x-9\right)}+\dfrac{1}{3}\)
\(=\dfrac{2x-6\sqrt{x}}{3\left(x-9\right)}+\dfrac{x-9}{3\left(x-9\right)}\)
\(=\dfrac{3x-6\sqrt{x}-9}{3x-27}\)
\(=\dfrac{x-2\sqrt{x}-3}{x-9}\)
a: \(A=\dfrac{\sqrt{3}+1}{\sqrt{3}+1}+\sqrt{5}+3-3-\sqrt{5}=1\)
b: \(B=\dfrac{-\sqrt{x}-3+x-3\sqrt{x}-x-9}{x-9}=\dfrac{-4\sqrt{x}-12}{x-9}=\dfrac{-4}{\sqrt{x}-3}\)
Để B>1 thì \(\dfrac{-4-\sqrt{x}+3}{\sqrt{x}-3}>0\)
\(\Leftrightarrow\sqrt{x}-3< 0\)
hay 0<x<9
a: \(A=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{2\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}\)
\(=\dfrac{-6}{\sqrt{x}+3}\)
b: Để A<-1/2 thì A+1/2<0
\(\Leftrightarrow-\dfrac{6}{\sqrt{x}+3}+\dfrac{1}{2}< 0\)
\(\Leftrightarrow-12+\sqrt{x}+3< 0\)
=>0<x<81 và x<>9
\(A=\dfrac{3x+4\sqrt{x}-7}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}+\dfrac{1-x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}-\dfrac{x-\sqrt{x}-6}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{3x+4\sqrt{x}-7+1-x-x+\sqrt{x}+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x+5\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)
\(P=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x+1\right)}+\frac{1}{x+1}\right).\frac{x+1}{\sqrt{x}-1}\)ĐK x>=0 x khác -1
=\(\frac{\sqrt{x}+1}{x+1}.\frac{x+1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
b/ x =\(\frac{2+\sqrt{3}}{2}=\frac{4+2\sqrt{3}}{4}=\frac{3+2\sqrt{3}+1}{4}=\frac{\left(\sqrt{3}+1\right)^2}{4}\)
\(\Rightarrow\sqrt{x}=\frac{\sqrt{3}+1}{2}\)
Em thay vào tính nhé!
c) với x>1
A=\(\frac{\sqrt{x}+1}{\sqrt{x}-1}.\sqrt{x}=\frac{x+\sqrt{x}}{\sqrt{x}-1}=\sqrt{x}+2+\frac{2}{\sqrt{x}-1}=\sqrt{x}-1+\frac{2}{\sqrt{x}-1}+3\)
Áp dụng bất đẳng thức Cosi
A\(\ge2\sqrt{2}+3\)
Xét dấu bằng xảy ra ....
1: Khi x=36 thì \(A=\dfrac{7\cdot6+2}{2\cdot6+1}=\dfrac{44}{13}\)
2: \(B=\dfrac{x+6\sqrt{x}+9+x-6\sqrt{x}+9-36}{x-9}\)
\(=\dfrac{2x-18}{x-9}=2\)
3: \(P=A-B=\dfrac{7\sqrt{x}+2-4\sqrt{x}-2}{2\sqrt{x}+1}=\dfrac{3\sqrt{x}}{2\sqrt{x}+1}\)
Để P là số tự nhiên thì \(3\sqrt{x}⋮2\sqrt{x}+1\)
\(\Leftrightarrow6\sqrt{x}+3-3⋮2\sqrt{x}+1\)
\(\Leftrightarrow2\sqrt{x}+1\in\left\{1;3\right\}\)
hay \(x\in\left\{0;1\right\}\)
a: \(P=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}=\dfrac{-3\left(\sqrt{x}+1\right)}{x-9}\)
\(M=\dfrac{-3\left(\sqrt{x}+1\right)}{x-9}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{-3}{\sqrt{x}+3}\)
b: \(A=\dfrac{-3x+4x+7}{\sqrt{x}+3}=\dfrac{x+7}{\sqrt{x}+3}=\dfrac{x-9+16}{\sqrt{x}+3}\)
=>\(A=\sqrt{x}-3+\dfrac{16}{\sqrt{x}+3}=\sqrt{x}+3+\dfrac{16}{\sqrt{x}+3}-6>=2\sqrt{16}-6=2\)
Dấu = xảy ra khi x=1