Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
do số chính phương khi chia cho 3 có số dư là 0 hoặc 1 mà n là số nguyên tố nên n^2 có dạng 3k+1
Ta có:n^2+2018=3k+1+2018=3k+2019
do 3k chia hết cho 3,2019chia hết cho 3
nên 3k+2019 là hợp số hay n^2+2018 là hợp số
Vậy không có số nguyên tố n nào thỏa mãn đề bài
Vì n là số nguyen tố lon hon 3 nên n co dang : 3k+1;3k+2
TH1 : n=3k+1
=> n^2+2018=(3k+1)(3k+1)+2018=9k^2+3k+3k+1+2018=9k^2+6k+2019
TH2 : n=3k+2
=> n^2+2018=(3k+2)(3k+2)+2018=9k^2+6k+6k+4+2018=9k^2+12k+2022 chia het cho 3
Vay n^2+2018 la hop so
n là số nguyên tố > 3
=> n ko chia hết cho 3
=> n^2 chia 3 dư 1
=> n^2+2019 chia hết cho 3
Mà n^2+2019 > 3 => n^2+2019 là hợp số
Tk mk nha
a)Ta có
p = 42k + y = 2. 3 .7 . k + r (k,r thuộc N, 0 < y < 42 )
Vì y là số nguyên tố nên r không chia hết cho 2, 3, 7.
Các hợp số nhỏ hơn 42 và không chia hết cho 2 là 9, 15, 21, 25, 27, 33, 35, 39.
Loại đi các số chia hết cho 3, cho 7, chỉ còn 25.
p nguyên tố lớn hơn 3
=>p không chia hết cho 3
=>p^2016 không chia hết cho 3
=>p^2016 chia 3 dư 1 hoặc dư 2
+) p^2016 chia 3 dư 1
=>p^2016+2018 chia hết cho 3
Mà p^2016+2018 > 3
=>p^2016+2018 là hợp số
+)p^2016 chia 3 dư 2
=>...
...
=>p^2016+2018 là số nguyên tố
Vậy p^2016+2018 có thể là số nguyên tố hoặc hợp số
Hợp số