Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác MAIC có
\(\widehat{MAI}+\widehat{MCI}=90^0+90^0=180^0\)
=>MAIC là tứ giác nội tiếp
=>\(\widehat{AMC}+\widehat{AIC}=180^0\left(1\right)\)
Ta có: AM\(\perp\)AB
BN\(\perp\)AB
Do đó: AM//BN
=>\(\widehat{AMN}+\widehat{CNB}=180^0\left(2\right)\)
Từ (1) và (2) suy ra \(\widehat{CIA}=\widehat{CNB}\)
Xét (O) có
\(\widehat{CAB}\) là góc nội tiếp chắn cung CB
\(\widehat{CBN}\) là góc tạo bởi tiếp tuyến BN và dây cung BC
Do đó: \(\widehat{CAB}=\widehat{CBN}\)
Xét ΔCAI và ΔCBN có
\(\widehat{CAI}=\widehat{CBN}\)
\(\widehat{CIA}=\widehat{CNB}\)
Do đó: ΔCAI đồng dạng với ΔCBN
b: Xét tứ giác ICNB có \(\widehat{ICN}+\widehat{IBN}=90^0+90^0=180^0\)
nên ICNB là tứ giác nội tiếp
=>\(\widehat{IBC}=\widehat{INC}\)
=>\(\widehat{CBA}=\widehat{CNI}\)
Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
Xét ΔCAB vuông tại C và ΔCIN vuông tại C có
\(\widehat{CBA}=\widehat{CNI}\)
Do đó: ΔCAB đồng dạng với ΔCIN
c: Ta có: MAIC là tứ giác nội tiếp
=>\(\widehat{MAC}=\widehat{MIC}\)
Ta có: NCIB là tứ gáic nội tiếp
=>\(\widehat{NIC}=\widehat{NBC}\)
Ta có: \(\widehat{MIN}=\widehat{MIC}+\widehat{NIC}\)
\(=\widehat{MAC}+\widehat{NBC}\)
\(=90^0-\widehat{CAB}+90^0-\widehat{CBA}\)
\(=180^0-90^0=90^0\)
a)MOC vuông tại M => MOC + MCO = 90
mà ICO cân tại I => MCO = COI ; mà COI + COA =90
=> MOC = COA => OC là phân giác AOM
CM tương tự đối với OD ( IOD + DOB =90...)
b) \(\Delta\)AOC =\(\Delta\)MOC (c=g-c)
=> A =90 => CA vuông góc với OA tại A thuộc (O)
=> CA là tiếp tuyến của (O)
- CM tương tự DB là tt
c) theo a
OC là phân giác AOM ; OD là phân giác MOB
mà AOM;MOB là hai góc kề bù => OC vuông góc OD
=>\(\Delta\)COD vuông tại O
\(\Delta\)AMB vuông tại M ( OM =OA=OB =1/2 AB)
mà có góc D = B =COM ( tự cm)
=> \(\Delta\)COD đồng dạng \(\Delta\)AMD ( g-g)
d) \(\Delta\)AOC đồng dạng \(\Delta\)BDO
=>OA/BD = AC/BO => AC.BD = OA.OB = AB/2 .AB/2 = AB2/4
a, xét từ giác AMNC có
\(\widehat{CAM}\)=90∘CAM^=90∘ (Ac là tiếp tuyến của (O) , ˆ
\(\widehat{CNM}\)=90∘CNM^=90∘ (MN vuông góc với CD) => ˆ\(\widehat{CAM}+\widehat{CNM}\)=180
=> AMNC nội tiếp
Xét tứ giác BMND có ˆ\(\widehat{MNB}\)MBD^=90 ( BD là tiếp tuyến của (O) , \(\widehat{CND}\)=90 ( MN vuông góc với CD)
=> \(\widehat{MND}+\widehat{NAC}\)NAC^=180
=> Tứ giác BDMN nội tiếp
b, Ta có \(\widehat{CMN}=\widehat{NAC}\)NAC^ (cùng chắn CN)
=> \(\)\(\widehat{CMN}\)CMN^=1212 cung AN(1)
Ta cũng có\(\widehat{NMD}+\widehat{NMD}\)NBD^ (cùng chắn cung ND)
\(\widehat{NMD}\)=1212 cung NB(2)
Từ (1) và (2) => \(\widehat{CMD}+\widehat{NMD}\)NMD^= 1212 (cung AN + cung NB)
=> \(\widehat{CMD}\)= 1212 cung AB = 18021802=90
=> tam giác CMD vuông tại M
Vì NMBD nội tiếp => \(\widehat{NDM}+\widehat{NBM}\)NBM^ ( góc nội tiếp cùng chắn cung AM)
Mà \(\widehat{MCD}+\widehat{NBM}\)=90
=> \(\widehat{MCD}+\widehat{NBM}\)NBM^=90 (1)
Mặt khác \(\widehat{NAB}+\widehat{NBA}\)NBA^=90 (2)
Từ (1) và (2) => \(\widehat{MCD}=\widehat{NAB}\)
Xét tam giác ANB và CMD ta cs
\(\widehat{ANB}=\widehat{CMD}\) (=90)
\(\widehat{MCD}=\widehat{NAD}\)
=> 2 tam giác này bằng nhau
A B E F x y M K O
a)\(\hept{\begin{cases}Ax⊥AB\\By⊥AB\end{cases}}\)=> Ax // By.\(\Delta KFB\)có EA // FB nên\(\frac{KF}{KA}=\frac{BF}{AE}\)(hệ quả định lí Ta-lét) mà EA = EM ; FM = FB (tính chất của 2 tiếp tuyến)
\(\Rightarrow\Delta AEF\)có\(\frac{KF}{KA}=\frac{MF}{ME}\)nên MK // AE (định lí Ta-lét đảo) mà\(AE⊥AB\Rightarrow MK⊥AB\)
b)\(\widehat{EOM}=\frac{\widehat{AOM}}{2};\widehat{FOM}=\frac{\widehat{MOB}}{2}\)(tính chất 2 tiếp tuyến) mà\(\widehat{EOM}+\widehat{FOM}=180^0\)(kề bù)
\(\Rightarrow\widehat{EOF}=\widehat{EOM}+\widehat{FOM}=\frac{180^0}{2}=90^0\)
\(\Rightarrow\Delta EOF\)vuông tại O có OE + OF > EF (bđt tam giác) ; OE + OF < 2EF (vì OE,OF < EF)
\(\Rightarrow1< \frac{OE+OF}{EF}< 2\Rightarrow2< \frac{P_{EOF}}{EF}< 3\Rightarrow\frac{1}{3}< \frac{EF}{P_{EOF}}< \frac{1}{2}\)(1)
Hình thang AEFB (AE // FB) có diện tích là :\(\frac{\left(AE+FB\right).AB}{2}=\frac{\left(EM+FM\right).2R}{2}=EF.R\)
SAEO = SMEO vì có đáy OA = OM ; đường cao AE = ME\(\Rightarrow S_{MEO}=\frac{1}{2}S_{AEMO}\)
SFOM = SFOB vì có đáy FM = FB ; đường cao OM = OB\(\Rightarrow S_{FOM}=\frac{1}{2}S_{MFBO}\)
\(\Rightarrow S_{EOF}=\frac{1}{2}\left(S_{AEMO}+S_{MFBO}\right)=\frac{EF.R}{2}\).Từ tâm đường tròn nội tiếp I của\(\Delta EOF\)kẻ các đường vuông góc với OE,OF,EF thì\(S_{EOF}=S_{EIF}+S_{EIO}+S_{OIF}\)\(\Leftrightarrow\frac{EF.R}{2}=\frac{EF.r+EO.r+OF.r}{2}\)
\(\Rightarrow EF.R=P_{EOF}.r\Rightarrow\frac{r}{R}=\frac{EF}{P_{EOF}}\)(2).Thay (2) vào (1) ta có đpcm.