Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có: $n^4-1=(n^2-1)(n^2+1)$
Ta biết rằng một số chính phương khi chia $5$ có thể có dư là $0,1,4$. Áp dụng điều này với $(n,5)=1$ thì $n^2$ chia $5$ dư $1$ hoặc $4$
Nếu $n^2$ chia $5$ dư $1$ $\Rightarrow n^2-1\vdots 5\Rightarrow n^4-1\vdots 5$
Nếu $n^2$ chia $5$ dư $4$ $\Rightarrow n^2+1\vdots 5\Rightarrow n^4-1\vdots 5$
Vậy $n^4-1\vdots 5(1)$
----------------
$n$ lẻ nên đặt $n=2k+1$ với $k$ nguyên
$n^4-1=(n^2-1)(n^2+1)=[(2k+1)^2-1][(2k+1)^2+1]=(4k^2+4k)(4k^2+4k+2)=8k(k+1)(2k^2+2k+1)$
Thấy $k(k+1)$ là tích 2 số nguyên liên tiếp nên $k(k+1)\vdots 2$
$\Rightarrow n^4-1=8k(k+1)(2k^2+2k+1)\vdots 16(2)$
Từ $(1);(2)$ mà $(5,16)=1$ nên $n^4-1\vdots (5.16=80)$ (đpcm)
Giải giúp e bài này vs: https://hoc24.vn/hoi-dap/question/883497.html
Ta có : \(m;n\)là hai số nguyên tố cùng nhau.
\(\RightarrowƯCLN(m;n)=1\)
Mà \(m^2⋮n\)
\(n^2⋮m\)
Và có : \(m;n\)là hai số lẻ nguyên dương
\(\Rightarrow m=m=1\)
\(\Rightarrow m^2+n^2+2=4\)
\(\Rightarrow4m.n=4\)
\(\Rightarrow m^2+n^2+2⋮4mn\left(đpcm\right)\)
Ta có:
\(\hept{\begin{cases}m^2+2⋮n\\n^2+2⋮m\end{cases}}\)
\(\Rightarrow\left(m^2+2\right)\left(n^2+2\right)⋮mn\)
\(\Rightarrow m^2n^2+2m^2+2n^2+4⋮mn\)
\(\Rightarrow2m^2+2n^2+4⋮mn\)
\(\Rightarrow m^2+n^2+2⋮mn\left(1\right)\)
Vì m, n lẻ
\(\Rightarrow\hept{\begin{cases}m^2\equiv1\left(mod4\right)\\n^2\equiv1\left(mod4\right)\end{cases}}\)
\(\Rightarrow m^2+n^2+2⋮4\left(2\right)\)
Từ (1) và (2) \(\Rightarrow m^2+n^2+2⋮4mn\)
Có: \(\Delta=p^2+4>0\), mọi p
=> phương trình luôn có 2 nghiệm phân biệt .
Áp dụng định lí Viet ta có:
\(x_1+x_2=-p\)
\(x_1.x_2=-1\)
Ta cần chứng minh với n là số tự nhiên: \(S_{n+2}=-pS_{n+1}+S_n\) (1)
+) Với \(S_0=x_1^o+x_2^o=2\);\(S_1=-p\)
\(S_2=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=p^2+2=-pS_1+S_2\)
=>(1) đúng với n = 0.
+) G/s : (1) đúng với n
+) Chứng minh (1) đúng (1) đúng với n +1
Ta có: \(S_{n+1}=x_1^{n+1}+x_2^{n+1}=\left(x_1^n+x_2^n\right)\left(x_1+x_2\right)-x_1x_2\left(x_1^{n-1}+x_1^{n-2}\right)\)
\(=-pS_n+S_{n-1}\)
=> (1) đúng với n +1
Vậy với mọi số tự nhiên n: \(S_{n+2}=-pS_{n+1}+S_n\)(1)
G/s: \(\left(S_n;S_{n+1}\right)=d\)
=> \(\hept{\begin{cases}S_{n+1}=-pS_n+S_{n-1}⋮d\\S_n⋮d\end{cases}}\Rightarrow S_{n-1}⋮d\)
=> \(\hept{\begin{cases}S_n=-pS_{n-1}+S_{n-2}⋮d\\S_{n-1}⋮d\end{cases}}\Rightarrow S_{n-2}⋮d\)
.....
Cứ tiếp tự như vậy
=> \(S_0⋮d;S_1⋮d\)
=> \(\hept{\begin{cases}2⋮d\Rightarrow d\in\left\{\pm1;\pm2\right\}\\-p⋮d\Rightarrow d\in\left\{\pm1;\pm p\right\}\end{cases}}\)
Mà p là số lẻ
=> d =1
=> \(S_n;S_{n-1}\)là hai số nguyên tố cùng nhau.
m.n/(m^2+n^2 ) và m.n/2018
- Đặt (m,n)=d => m= da;n=db ; (a,b)=1
=> d^2(a^2+b^2)/(d^2(ab)) = (a^2+b^2)/(ab) => b/a ; a/b => a=b=> m=n=> ( 2n^2+2018)/n^2 =2 + 2018/n^2 => n^2/2018
=> m=n=1 ; lẻ và nguyên tố cùng nhau. vì d=1
Vẽ SH _I_ (ABCD) => H là trung điểm AD => CD _I_ (SAD)
Vẽ HK _I_ SD ( K thuộc SD) => CD _I_ HK => HK _I_ (SCD)
Vẽ AE _I_ SD ( E thuộc SD).
Ta có S(ABCD) = 2a² => SH = 3V(S.ABCD)/S(ABCD) = 3(4a³/3)/(2a²) = 2a
1/HK² = 1/SH² + 1/DH² = 1/4a² + 1/(a²/2) = 9/4a² => HK = 2a/3
Do AB//CD => AB//(SCD) => khoảng cách từ B đến (SCD) = khoảng cách từ A đến (SCD) = AE = 2HK = 4a/3
1.
\(x^4+4y^4=x^4+4x^2y^2+y^4-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)
\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)
Do x, y nguyên dương nên số đã cho là SNT khi:
\(x^2-2xy+2y^2=1\Rightarrow\left(x-y\right)^2+y^2=1\)
\(y\in Z^+\Rightarrow y\ge1\Rightarrow\left(x-y\right)^2+y^2\ge1\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=1\)
Thay vào kiểm tra thấy thỏa mãn
2. \(N=n^4+4^n\)
- Với n chẵn hiển nhiên N là hợp số
- Với \(n\) lẻ: \(\Rightarrow n=2k+1\)
\(N=n^4+4^n=n^4+4^{2k+1}=n^4+4.4^{2k}+4n^2.4^k-n^2.4^{k+1}\)
\(=\left(n^2+2.4^k\right)^2-\left(n.2^{k+1}\right)^2=\left(n^2+2.4^k-n.2^{k+1}\right)\left(n^2+2.4^k+n.2^{k+1}\right)\)
Mặt khác:
\(n^2+2.4^k-n.2^{k+1}\ge2\sqrt{2n^2.4^k}-n.2^{k+1}=2\sqrt{2}n.2^k-n.2^{k+1}\)
\(=n.2^{k+1}\left(\sqrt{2}-1\right)\ge2\left(\sqrt{2}-1\right)>1\)
\(\Rightarrow N\) là tích của 2 số dương lớn hơn 1
\(\Rightarrow\) N là hợp số
Bài 4 chắc không có cách "đại số" nào (tức là dựa vào lý luận chia hết tổng quát) để giải. Mình nghĩ vậy (có lẽ có, nhưng mình ko biết).
Chắc chỉ sáng lọc và loại trừ theo quy tắc kiểu: do đổi vị trí bất kì đều là SNT nên không thể chứa các chữ số chẵn và chữ số 5, như vậy số đó chỉ có thể chứa các chữ số 1,3,7,9
Nó cũng không thể chỉ chứa các chữ số 3 và 9 (sẽ chia hết cho 3)
Từ đó sàng lọc được các số: 113 (và các số đổi vị trí), 337 (và các số đổi vị trí)
Nếu bạn đã từng tự rủa bản thân vì quá ngu...thì đúng là bạn ngu thật. Chỉ có loại ngu mới đi chửi chính mình.
-Triết lý anh Sơn-
2c, \(x^2\left(1+y^2\right)+y^2\left(1+z^2\right)+z^2\left(1+x^2\right)\ge6xyz\\
\)
Á djt mẹ nãy dùng BĐT quá k nhớ ra là còn có cả trường hợp âm không dùng BĐT được...nên xử lí luôn he? :))
Nếu trong 3 số \(x,y,z\)có 1 hoặc 3 số âm, ta có \(6xyz\le0\le x^2\left(1+y^2\right)+y^2\left(1+z^2\right)+z^2\left(1+x^2\right)\) (ĐPCM)
Nếu trong 3 số \(x,y,z\)có 2 số âm hoặc có 3 số dương thì xét như nhau (nói âm dương là vậy chứ thiết nhất là em ghi \("\ge0"\)và \("\le0"\)cho nó chuẩn nhất ;))
Có: \(x^2\left(1+y^2\right)+y^2\left(1+z^2\right)+z^2\left(1+x^2\right)\ge2x^2y+2y^2z+2z^2x\)(1) (Bất đẳng thức Cô-si)
Ta cần chứng minh: \(2x^2y+2zy^2+2xz^2\ge6xyz\)
\(\Leftrightarrow\)\(\frac{2x^2y}{xyz}+\frac{2zy^2}{xyz}+\frac{2xz^2}{xyz}=2\frac{x}{z}+2\frac{y}{x}+2\frac{z}{y}\ge6\)(2)
Đến đây có thể làm theo 2 cách, nhưng thôi anh làm cách nhanh hơn :))
Áp dụng BĐT Cauchy-Schwarz cho 2 bộ số \(\left(\sqrt{x},\sqrt{y},\sqrt{z}\right)\)và \(\left(x,y,z\right)\)trong đó \(x,y,z\ge0\). Khi đó:
\(\frac{\left(\sqrt{x}\right)^2}{z}+\frac{\left(\sqrt{y}\right)^2}{x}+\frac{\left(\sqrt{z}\right)^2}{y}\ge\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{x+y+z}\)
Thay vào (2) ta có:\(2\frac{x}{z}+2\frac{y}{x}+2\frac{z}{y}\ge2\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{x+y+z}\ge6\)(3)
Từ (1), (2) và (3) => ĐPCM
Đến đây có lẽ chú sẽ nghĩ: Dựa vào đâu mà cha này bảo \(\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{x+y+z}\ge3\)???
Thì câu trả lời đây: \(\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{x+y+z}\ge3\)\(\Leftrightarrow\)\(\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\ge3\left(x+y+z\right)\)
\(\Leftrightarrow\)\(2x+2y+2z-2\sqrt{xy}-2\sqrt{yz}-2\sqrt{zx}=\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\)
\(n=2k+1\)
\(\Rightarrow A=1+2.4^k+3.9^k+4.16^k+5.25^k\)
- Ta có: \(4\equiv1\left(mod3\right)\Rightarrow2.4^k\equiv2mod\left(3\right)\)
\(16\equiv1\left(mod3\right)\Rightarrow4.16^k\equiv1\left(mod3\right)\)
\(25\equiv1\left(mod3\right)\Rightarrow5.25^k\equiv2\left(mod3\right)\)
\(\Rightarrow A\equiv\left(1+2+1+2\right)\left(mod3\right)\Rightarrow A⋮3\)
Tương tự ta có:
\(A\equiv\left(1+-2-3+4\right)\left(mod5\right)\Rightarrow A⋮5\)
Mà 3 và 5 nguyên tố cùng nhau \(\Rightarrow A⋮15\)