K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2020

n là số nguyên tố lớn hơn 3 

=> n chia 3 dư 1 hoặc n chia 3 dư 2

=> n^2 chia 3 dư 1

Ta có: \(6n\) chia hết cho 3 

và \(17\) chia 3 dư 2

=> \(n^2+6n+17\) chia 3 dư 3

hay \(n^2+6n+17\) chia hết cho 3 

=> \(n^2+6n+17\) là hợp số.

Vì n là số nguyên tố lớn hơn 3 nên n2 chia cho 3 dư 1.
=> n2
 có dạng 3k+1
=>n2+2006=3k+1+2006=3k+2007
Vì 3k chia hết cho 3
2007 chia hết cho 3
=> 3k+1+2006 chia hết cho 3
=>n2+2006 chia hết cho 3 nên nó là hợp số

22 tháng 4 2018

Vì n là số nguyên tố lớn hơn 3 nên nchia cho 3 dư 1.

=> n2 có dạng 3k+1

=>n2+2006=3k+1+2006=3k+2007

Vì 3k chia hết cho 3

2007 chia hết cho 3

=> 3k+1+2006 chia hết cho 3

=>n2+2006 chia hết cho 3 nên nó là hợp số

28 tháng 6 2015

n là số nguyên tố lớn hơn 3 nên không chia hết cho 3 .

Vậy n chia cho 3 dư 1 tức là n2 = 3k + 1

Do đó n2 + 2006 = 3k + 1 + 2006 =  3k + 2007 chia hết cho 3 . 

Vậy n2 + 2006 là hợp số .

28 tháng 6 2015

Vì 2006 là hợp số, mà n là số nguyên tố lớn hơn 3 nên n là số lẻ>3, mà số lẻ2=số lẻ

=>2006+số lẻ=số lẻ là số nguyên tố

mk cũng k chắc về bài này lắm

6 tháng 4 2017

ta sẽ có số thay : 5;7;11

Từ đó ta có: +5^2+2006=10+2006=2016 => là hợp số

                    +7^2+2006=14+2006=2020=>là hợp số

                    +11^2+2006=22+2006=2028=>là hợp số

Từ 3 ví dụ trên ta tháy nếu n là số nguyên tố >3 thì n^2 +2006 là hợp số

6 tháng 4 2017

vì n là số nguên tố lớn hơn 3

suy ra n chia 3 dư 1 và chia 3 dư 2

suy ra n^2 chia 3 dư 1

mà 2006 chia 3 dư 2

suy ra n^2+2006=3k+1+668*3+2

suy ra 3(k+669) chia hết cho 3

suy ra n^2+2006 là hợp số 

HOẶC BẠN CÓ THỂ LÀM THEO CÁCH ĐỒNG DƯ THÌ NHANH HƠN

31 tháng 1 2018

do số chính phương khi chia cho 3 có số dư là 0 hoặc 1 mà n là số nguyên tố nên n^2 có dạng 3k+1

Ta có:n^2+2018=3k+1+2018=3k+2019

do 3k chia hết cho 3,2019chia hết cho 3

nên 3k+2019 là hợp số hay n^2+2018 là hợp số

Vậy không có số nguyên tố n nào thỏa mãn đề bài 

DD
14 tháng 9 2021

\(n\)là số nguyên tố lớn hơn \(3\)nên có dạng \(n=3k+1\)hoặc \(n=3k+2\)với \(k\inℕ^∗\).

Với \(n=3k+1\)\(n^2=\left(3k+1\right)^2=9k^2+6k+1\)chia cho \(3\)dư \(1\).

Với \(n=3k+2\)\(n^2=\left(3k+2\right)^2=9k^2+12k+4\)chia cho \(3\)dư \(1\).

Do đó \(n^2\)đều chia cho \(3\)dư \(1\).

Khi đó \(n^2+2021\)chia hết cho \(3\).

Mà \(n^2+2021>3\)do đó \(n^2+2021\)là hợp số. 

9 tháng 6 2015

Vì n là số nguyên tố lớn hơn 3 nên n2 chia cho 3 dư 1.

=> n2 có dạng 3k+1

=>n2+2006=3k+1+2006=3k+2007

Vì 3k chia hết cho 3

2007 chia hết cho 3

=> 3k+1+2006 chia hết cho 3

=>n2+2006 chia hết cho 3 nên nó là hợp số

9 tháng 6 2015

Số nguyên tố lớn hơn 3 có dạng 3k + 1 hoặc 3k + 2 (k \(\in\) N)

Với n = 3k + 1 thì n2 + 2006 = (3k + 1)2 + 2006 = 9k2 + 1 +  2006 = 9k2 + 2007 = 9.(k2 + 223) chia hết cho 9, là hợp số.

Với n = 3k + 2 thì n2 + 2006 = (3k + 2)2 + 2006 = 9k2 + 4 +  2006 = 9k2 + 2010 = 3.(3k2 + 670) chia hết cho 3, là hợ số.

                            Vậy n2 + 2006 là hợp số.